Skip to main content
Log in

Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea)

  • Original Investigations
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The localisation and distribution of 5-hydroxytryptamine (5-HT, or serotonin) and a number of vertebrate neuropeptides in the nervous system of excysted (0–24 h) cysticercoid larvae of Hymenolepis diminuta were determined by an indirect immunofluorescence technique in wholemount preparations. In the central nervous system, cell bodies and nerve fibres immunoreactive to 5-HT are present in the main commissure, lateral and rostellar ganglia, and the longitudinal nerve cords and their connectives. In the peripheral nervous system, immunoreactive nerve fibres occur in a poorly developed nerve plexus within each sucker. Among the vertebrate peptides tested, antisera to pancreatic polypeptide (PP), polypeptide YY (PYY), peptide histidine isoleucine (PHI) and gastrin-releasing peptide (GRP) gave positive results. Immunoreactivity to PP and PYY paralleled that of 5-HT, with greater numbers of cell bodies present in the different locations within the scolex nervous system, and the sucker plexus being more prominent. The number of PP-reactive cells in the lateral ganglia and main lateral, longitudinal nerve cords increased over the 24-h period in culture. Results with antisera of different specificities to PP and PYY suggest that the immunoreactivity may be due to a peptide with closer structural affinity to PYY than to PP. Immunoreactivity to PHI is restricted to the main lateral nerve cords in the body of 0-h worms, extending into the median nerve cords by 12 h and 24 h. Immunoreactivity to GRP became evident after 12 h in culture and was confined to the longitudinal nerve cords, in particular the median nerve cords. The results are discussed in relation to the proposed transmitter and regulatory roles of 5-hydroxytryptamine and the neuropeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballesta J, Bloom SR, Polak JM (1985) Distribution and localization of regulatory peptides. CRC Crit Rev Clin Lab Sci 22:185–218

    Google Scholar 

  • Bodenmüller H, Schaller HC (1981) Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature 293:579–580

    Google Scholar 

  • Cho CH (1984) Study of the effects of insulin on the migration of Hymenolepis diminuta in rats. J Helminthol 58:291–293

    Google Scholar 

  • Chou T-CT, Bennett J, Bueding E (1972) Occurrence and concentrations of biogenic amines in trematodes. J Parasitol 58:1098–1102

    Google Scholar 

  • Coons AH, Leduc EH, Connolly J (1955) Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyper-immune rabbit. J Exp Med 102:49–60

    Google Scholar 

  • Cyr D, Gruner S, Mettrick DF (1983) Hymenolepis diminuta: uptake of 5-hydroxytryptamine (serotonin), glucose, and changes in worm glycogen levels. Can J Zool 61:1469–1474

    Google Scholar 

  • Evans WS (1980) The cultivation of Hymenolepis in vitro. In: Arai HP (ed) Biology of the tapeworm Hymenolepis diminuta. Academic Press, Inc, New York, pp 425–448

    Google Scholar 

  • Fairweather I (1978) Studies on the nervous system of Hymenolepis nana (Cestoda: Cyclophyllidea). PhD Thesis, University of London

  • Fairweather I, Threadgold LT (1983) Hymenolepis nana: the fine structure of the adult nervous system. Parasitology 86:89–103

    Google Scholar 

  • Fairweather I, Maule AG, Johnston CF, Halton DW (1986) Immunocytochemical demonstration of vertebrate neuropeptides in the nervous system of the tapeworm, Trilocularia acanthiaevulgaris. Regul Pept 15:175

    Google Scholar 

  • Fairweather I, McAuley KJ, Jonston CF, Halton DW, Buchanan RD, O'Neill AB, Murphy RF, Armstrong EP (1987) Immunocytochemical demonstration of vertebrate neuropeptides in the rat tapeworm, Hymenolepis diminuta. Regul Pept 18:372

    Google Scholar 

  • Falkmer S, Gustafsson MKS, Sundler F (1985) Phylogenetic aspects on the neuroendocrine system. A minireview with particular reference to cells storing neurohormonal peptides in some primitive postostomian invertebrates (flatworms, annelids). Nord Psykiatr Tidsskr 39 [Suppl 11]:21–30

    Google Scholar 

  • Friedel T, Webb RA (1979) Stimulation of mitosis in Dugesia tigrina by a neurosecretory fraction. Can J Zool 57:1818–1819

    Google Scholar 

  • Goodchild CG, Harrison DL (1961) The growth of the rat tapeworm, Hymenolepis diminuta, during the first five days in the final host. J Parasitol 47:819–829

    Google Scholar 

  • Graff DJ, Read CP (1967) Specific acetylcholinesterase in Hymenolepis diminuta. J Parasitol 53:1030–1031

    Google Scholar 

  • Greenberg MJ, Price DA (1983) Invertebrate neuropeptides: native and naturalized. Ann Rev Physiol 45:271–288

    Google Scholar 

  • Grimmelikhuijzen CJP (1984) Peptides in the nervous system of coelenterates. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier Science Publishers BV, Amsterdam New York Oxford, chap 3, pp 39–58

    Google Scholar 

  • Gustafsson MKS, Wikgren MC (1981) Activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum (Cestoda: Pseudophyllidea). Parasitol 83:243–247

    Google Scholar 

  • Gustafsson MKS, Wikgren MC, Karhi TJ, Schot LPC (1985) Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res 240:255–260

    Google Scholar 

  • Gustafsson MKS, Lehtonen MAI, Sundler F (1986) Immunocytochemical evidence for the presence of “mammalian” neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res 243:41–49

    Google Scholar 

  • Haynes LW (1980) Peptide neuroregulators in invertebrates. Prog Neurobiol 15:205–245

    Google Scholar 

  • Kumazawa H, Moriki T (1986) Immunoenzymatic demonstration of a presumptive prolactin-like substance in Hymenolepis nana. Z Parasitenkd 72:137–139

    Google Scholar 

  • Lee MB, Bueding E, Schiller EL (1978) The occurrence and distribution of 5-hydroxytryptamine in Hymenolepis diminuta and H. nana. J Parasitol 64:257–264

    Google Scholar 

  • Lender T (1974) The role of neurosecretion in freshwater planarians. In: Riser NW, Morse MP (eds) Biology of the turbellaria. McGraw-Hill, Inc, New York, pp 460–475

    Google Scholar 

  • Lumsden RD, Specian R (1980) The morphology, histology, and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In: Arai HP (ed) Biology of the tapeworm Hymenolepis diminuta. Academic Press, Inc, New York, pp 157–280

    Google Scholar 

  • Macartney GA (1988) Studies on the early growth and development of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). PhD Thesis, Queen's University, Belfast

    Google Scholar 

  • McCullough JS, Fairweather I (1982) The neuroendocrine control of early adult growth in Hymenolepis diminuta (Cestoda, Cyclophyllidea). In: Parasites — their world and ours. Supplement to Molecular and Biochemical Parasitology. Proceedings of the Fifth International Congress of Parasitology, Toronto, Canada, August 1982, pp 150–151

  • Mettrick DF, Podesta RB (1982) Effect of gastrointestinal hormones and amines on intestinal motility and the migration of Hymenolepis diminuta in the rat small intestine. Int J Parasitol 12:151–154

    Google Scholar 

  • O'Shea M, Schaffer M (1985) Neuropeptide function: the invertebrate contribution. Ann Rev Neurosci 8:171–198

    Google Scholar 

  • Rahman MS, Mettrick DF, Podesta RB (1983) Effects of 5-hydroxytryptamine on carbohydrate metabolism in Hymenolepis diminuta (Cestoda). Can J Physiol Pharmacol 61:137–143

    Google Scholar 

  • Ribeiro P, Webb RA (1983a) The synthesis of 5-hydroxytryptamine from tryptophan and 5-hydroxytryptophan in the cestode Hymenolepis diminuta. Int J Parasitol 13:101–106

    Google Scholar 

  • Ribeiro P, Webb RA (1983b) The occurrence and synthesis of octopamine and catecholamines in the cestode Hymenolepis diminuta. Mol Biochem Parasitol 7:53–62

    Google Scholar 

  • Ribeiro P, Webb RA (1984) The occurrence, synthesis and metabolism of 5-hydroxytryptamine and 5-hydroxytryptophan in the cestode Hymenolepis diminuta: a high performance liquid chromatographic study. Comp Biochem Physiol (C) 79:159–164

    Google Scholar 

  • Roberts LS, Mong FN (1969) Developmental physiology of cestodes. IV. In vitro development of Hymenolepis diminuta in presence and absence of oxygen. Exp Parasitol 26:166–174

    Google Scholar 

  • Rothman AC (1970) Excystation in vitro of cysticercoids. In: MacInnis AJ, Voge M (eds) Experiments and techniques in parasitology. Freeman WH and Company, San Francisco, pp 28–29

    Google Scholar 

  • Saló E, Banguñà J (1986) Stimulation of cellular proliferation and differentiation in the intact and regenerating planarian Dugesia (G) tigrina by the neuropeptide substance P. J Exp Zool 237:129–135

    Google Scholar 

  • Scharrer B (1978) Current concepts on the evolution of the neurosecretory neuron. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Evolution, structure and function. Proceedings of the VIIth International Symposium on Neurosecretion, Leningrad, 1976. Springer, Berlin Heidelberg New York, pp 9–14

    Google Scholar 

  • Schiller EL (1965) A simplified method for the in vitro cultivation of the rat tapeworm, Hymenolepis diminuta. J Parasitol 51:516–518

    Google Scholar 

  • Sukhdeo MVK, Hsu SC, Thompson CS, Mettrick DF (1984) Hymenolepis diminuta: Behavioural effects of 5-hydroxytryptamine, acetylcholine, histamine and somatostatin. J Parasitol 70:682–688

    Google Scholar 

  • Sundler F, Håkanson R, Alumets J, Walles B (1977) Neuronal localization of pancreatic polypeptide (PP) and vasoactive intestinal peptide (VIP) immunoreactivity in the earthworm (Lumbricus terrestris). Brain Res Bull 2:61–65

    Google Scholar 

  • Van Noorden S (1984) The neuroendocrine system in protostomian and deuterostomian invertebrates and lower vertebrates. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier Science Publishers BV, Amsterdam New York Oxford, pp 7–38

    Google Scholar 

  • Webb RA (1977) Evidence for neurosecretory cells in the cestode Hymenolepis microstoma. Can J Zool 55:1726–1733

    Google Scholar 

  • Webb RA (1985) The uptake and metabolism of 5-hydroxytryptamine by tissue slices of the cestode Hymenolepis diminuta. Comp Biochem Physiol (C) 80:305–312

    Google Scholar 

  • Webb RA, Friedel T (1979) Isolation of a neurosecretory substance which stimulates RNA synthesis in regenerating planarians. Experientia 35:657–658

    Google Scholar 

  • Webb RA, Mizukawa K (1985) Serotonin like immunoreactivity in the cestode Hymenolepis diminuta. J Comp Neurol 234:431–440

    Google Scholar 

  • Wikgren M, Reuter M, Gustafsson MKS (1986) Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologia 132:93–99

    Google Scholar 

  • Wilson VCLC, Schiller EL (1969) The neuroanatomy of Hymenolepis diminuta and H. nana. J Parasitol 55:261–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairweather, I., Macartney, G.A., Johnston, C.F. et al. Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitol Res 74, 371–379 (1988). https://doi.org/10.1007/BF00539460

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539460

Keywords

Navigation