Marine Biology

, Volume 87, Issue 2, pp 137–142 | Cite as

Accumulation of metals by marine picoplankton

  • N. S. Fisher
Article

Abstract

The concentration of ten metals by the cultured bluegreen “picoplankter” Synechococcus sp. was investigated using radiotracer methodology in a series of laboratory experiments. Volume/volume concentration factors ranged from not significantly different from zero for Np and Cs to 106 for Sn, Hg, and Pu. As in eukaryotic algae, bioaccumulation of metals in Synechococcus sp. generally conformed with Freundlich adsorption isotherms. Given the ubiquity and abundance of the picoplankton and their high affinity for some metals, it is estimated that picoplankton-based food webs would represent a major route for the movement of particle-reactive metals in marine ecosystems.

Keywords

Laboratory Experiment Adsorption Isotherm Bioaccumulation Marine Ecosystem Concentration Factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Angel, M. V.: Detrital organic fluxes through pelagic ecosystems. In: Flows of energy and materials in marine ecosystems, pp 475–516. Ed. by M. J. R. Fasham. New York: Plenum 1984Google Scholar
  2. Bienfang, P. K. and M. Takahashi: Ultraplankton growth rates in a subtropical ecosystem. Mar. Biol. 76, 213–218 (1983)Google Scholar
  3. Bruland, K. W.: Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet. Sci. Lett. 47, 176–198 (1980)Google Scholar
  4. Bruland, K. W.: Trace elements in sea-water. In: Chemical oceanography, Vol. 8, pp 157–220. Ed. by J. P. Riley and R. Chester. London: Academic Press 1983Google Scholar
  5. Buat-Ménard, P.: Fluxes of metals through the atmosphere and oceans. In: Changing metal cycles and human health, pp 43–69. Ed. by J. O. Nriagu. Berlin: Springer-Verlag 1984Google Scholar
  6. Buat-Ménard, P., and R. Chesselet: Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett. 42, 399–411 (1979)Google Scholar
  7. Byrd, J. T. and M. O. Andreae. Tin and methyltin species in seawater: concentrations and fluxes. Science, N.Y. 218, 565–569 (1982)Google Scholar
  8. Ducklow, H. W.: Production and fate of bacteria in the oceans. BioScience 33, 494–501 (1983)Google Scholar
  9. Fenchel, T.: Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8, 225–231 (1982)Google Scholar
  10. Fisher, N. S. and S. W. Fowler: The role of biogenic debris in the vertical transport of transuranic wastes in the sea. In: Oceanic processes in marine pollution, Vol. 2. Ed. by T. P. O'Connor, W. V. Burt and I. W. Duedall. Malibar: R. E. Krieger Publ.Google Scholar
  11. Fisher, N. S., F. Azam and J.-L. Teyssié: Accumulation of 113Sn by a marine diatom. In: Speciation of fission and activation products in the environment. CEC and NRPB, Oxford (In press)Google Scholar
  12. Fisher, N. S., P. Bjerregaard and S. W. Fowler: Interactions of marine plankton with transuranic elements. 1. Biokinetics of neptunium, plutonium, americium and californium in phytoplankton. Limnol. Oceanogr. 28, 432–447 (1983a)Google Scholar
  13. Fisher, N. S., M. Bohé and J.-L., Teyssié: Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Mar. Ecol. Prog. Ser. 18, 201–213 (1984)Google Scholar
  14. Fisher, N. S., K. A. Burns, R. D. Cherry and M. Heyraud: Accumulation and cellular distribution of 241Am, 210Po, and 210Pb in two marine algae. Mar. Ecol. Prog. Ser. 11, 233–237 (1983 b)Google Scholar
  15. Fowler, S. W.: Biological transfer and transport processes. In: Pollutant transfer and transport in the sea, Vol. 2, pp 1–65. Ed. by G. Kullenberg, Boca Raton, Florida: CRC Press 1982Google Scholar
  16. Fowler, S. W., S. Ballestra, J. La Rosa, and R. Fukai. Vertical transport of particulate-associated plutonium and americium in the northeast Pacific. Deep-Sea Res. 30, 1221–1233 (1983)Google Scholar
  17. Guillard, R. R. L. and J. H. Ryther: Studies of marine planktonic diatoms I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962)Google Scholar
  18. Hardy, E. P., P. W. Krey and H. L. Volchok: Global inventory and distribution of fallout plutonium. Nature, Lond. 241, 444–445 (1973)Google Scholar
  19. Jickells, T. D., W. G. Deuser and A. H. Knap: The sedimentation rates of trace elements in the Sargasso Sea measured by sediment trap. Deep-Sea Res. 31, 1169–1178 (1984)Google Scholar
  20. Johnson, P. W. and J. McN Sieburth: Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24, 928–935 (1979)Google Scholar
  21. Johnson, P. W. and J. McN. Sieburth: In-situ morphology and occurrence of eucaryotic photoautotrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18, 318–327 (1982)Google Scholar
  22. Joint, I. R. and R. K. Pipe: An electron microscope study of a natural population of picoplankton from the Celtic Sea. Mar. Ecol. Prog. Ser. 20, 113–118 (1984)Google Scholar
  23. Joint, I. R. and A. J. Pomroy: Production of picoplankton and small nanoplankton in the Celtic Sea. Mar. Biol. 77, 19–27 (1983)Google Scholar
  24. Knauer, G. A., J. H. Martin and R. M. Gordon: Cobalt in northeast Pacific waters. Nature, Lond. 297, 49–51 (1982)Google Scholar
  25. Komar, P. D., A. P. Morse, L. F. Small and S. W. Fowler: An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol. Oceanogr. 26, 172–180 (1981)Google Scholar
  26. Larsson, U. and A. Hägstrom. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67, 57–70 (1982)Google Scholar
  27. Li, W. K. W., D. V. Subba Rao, W. G. Harrison, J. C. Smith, J. J. Cullen, B. Irwin and T. Platt. Autotrophic picoplankton in the tropical ocean. Science, N.Y. 219, 292–295 (1983)Google Scholar
  28. Lowman, F. G., T. R. Rice and F. A. Richards: Accumulation and redistribution of radionuclides by marine organisms In: Radioactivity in the marine environment, pp 161–199. Washington: U.S. National Academy of Sciences 1971Google Scholar
  29. Martin, J. H. and G. A. Knauer: The elemental composition of plankton. Geochim. cosmochim. Acta 37, 1639–1653 (1973)Google Scholar
  30. Martin, J. H. and G. A. Knauer: Managanese cycling in northeast Pacific equatorial waters. J. mar. Res. 40, 1213–1225 (1982)Google Scholar
  31. Martin, J. H., K. W. Bruland and W. W. Broenkow: Cadmium transport in the California current. In: Marine pollutant transfer, pp 159–184. Ed. by H. L. Windom and R. A. Duce. Lexington, Massachusetts: Lexington Books 1976Google Scholar
  32. Martin, J. H., G. A. Knauer and R. M. Gordon: Silver distributions and fluxes in north-east Pacific waters. Nature, Lond. 305, 306–309 (1983)Google Scholar
  33. Martin, J.-M. and M. Whitfield: The significance of the river input of chemical elements to the ocean. In: Trace metals in sea water, pp 265–296. Ed. by C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg. New York: Plenum 1983Google Scholar
  34. Murphy, L. S. and E. M. Haugen: The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30, 47–58 (1985)Google Scholar
  35. Olafsson, J.: Mercury concentrations in the North Atlantic in relation to cadmium, aluminium and oceanographic parameters. In: Trace metals in sea water, pp 475–485. Ed. by C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg, New York: Plenum 1983Google Scholar
  36. Pentreath, R. J. and B. R. Harvey: The presence of 237Np in the Irish Sea. Mar. Ecol. Prog. Ser. 6, 243–247 (1981)Google Scholar
  37. Platt, T., D. V. Subba Rao and B. Irwin: Photosynthesis of picoplankton in the oligotrophic ocean. Nature, Lond. 301, 702–704 (1983)Google Scholar
  38. Rassoulzadegan, F. and M. Etienne: Grazing rate of the tintinnid Stenosemella ventricosa (Clap. and Lachm.) Jorg. on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr. 26, 258–270 (1981)Google Scholar
  39. Spencer, D. W., P. G. Brewer, A. Fleer, S. Honjo, S. Krishnaswami and Y. Nozaki: Chemical fluxes from a sediment trap experiment in the deep Sargasso Sea. J. mar. Res. 36, 493–523 (1978)Google Scholar
  40. Takahashi, M. and P. K. Bienfang: Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters. Mar. Biol. 76, 203–211 (1983)Google Scholar
  41. Waterbury, J. B., S. W. Watson, R. R. L. Guillard and L. E. Brand: Widespread occurrence of a unicellular marine planktonic cyanobacteria. Nature, Lond. 277, 293–294 (1979)Google Scholar
  42. Wood, J. M. and H.-K. Wang. Microbial resistance to heavy metals. Environ. Sci. Technol. 17, 582–590 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • N. S. Fisher
    • 1
  1. 1.Musée OcéanographiqueInternational Laboratory of Marine RadioactivityMonaco

Personalised recommendations