Skip to main content
Log in

32S pre-rRNA processing: a dynamic model for interaction with U3RNA and structural rearrangements of spacer regions

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A model of rearrangement of 32S pre-rRNA during processing was proposed. The first step of these events is the cotranscriptional interaction of the 3′-half of 5.8S rRNA and adjacent part of the internal transcribed spacer (ITS-2) with the 3′-part of the small nucleolar U3RNA from its 155th to 215th nucleotides (numbered for a rat U3RNA). This interaction prevents formation of intramolecular double-stranded structure between 5′-and 3′-end sequences of 5.8S rRNA. The second step is the appearance of extended hairpin structures in the ITS-2, which leads to a compactisation of the entire 32S-pre-rRNA molecule and to the complex formation between 5.8S rRNA and 28S rRNA sequences as the result of U3RNA displacing. After elimination of ITS-2 sequences from 32S pre-rRNA this complex can be included into ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BachellerieJ-P, MichotB & RaynalF (1983) Mol. Biol. Rep. 9: 79–86

    Google Scholar 

  2. BowmanLH, RabinB & SchlessingerD (1981) Nucl. Acid Res. 9: 4951–4966

    Google Scholar 

  3. EpsteinP, ReddyR & BuschH (1984) Biochemistry 23: 5421–5425

    Google Scholar 

  4. CrouchRJ, KanayaS & EarlPL (1983) Mol. Biol. Rep. 9: 75–78

    Google Scholar 

  5. HadjiolovA (1985) In: The Nucleolus and Ribosome Biogenesis (pp 268–311) Springer Verlag Wien, New York

    Google Scholar 

  6. HallLMC & MadenBEH (1980) Nucl. Acid. Res. 8: 5993–6003

    Google Scholar 

  7. KelleyJM & MadenBEH (1980) Nucl. Acid. Res. 8: 4521–4534

    Google Scholar 

  8. KupriyanovaNS & TimofeevaMYa (1987) Molecularnaya Biologiya 21: 1000–1009

    Google Scholar 

  9. MazinAL (1983) Molecularnaya Biologiya 17: 755–783

    Google Scholar 

  10. MichotB, BachellerieJP & RaynalF (1983) Nucl. Acid Res. 11: 3375–3391

    Google Scholar 

  11. NazarRN, SitzThO & BuschH (1975) J. Biol. Chem. 250: 8591–8597

    Google Scholar 

  12. PerryRP (1976) Ann. Rev. Biochem. 45: 605–629

    Google Scholar 

  13. PrestaykoAW, TonatoM & BuschH (1970) J. Mol. Biol. 47: 505–525

    Google Scholar 

  14. SubrahmanyamChS, CassidyB, BuschH & RothblumL (1982) Nucl. Acid Res. 10: 3667–3678

    Google Scholar 

  15. VaughJC & SperbeckSJ (1984) Nucl. Acid Red. 12: 7479–7502

    Google Scholar 

  16. ReddyR, HennigD & BuschH (1980) J. Biol. Chem. 255: 7029–7033

    Google Scholar 

  17. TagueBW & GerbiSA (1984) J. Mol. Evolution 20: 362–367

    Google Scholar 

  18. ParkerKA & SteitzJA (1987) Mol. Cell. Biol. 7: 2899–2913

    Google Scholar 

  19. ErdmannVA, WoltersJ, HuysmansE & DeWachterR (1985) Nucl. Acid Res. 13 suppl.: r105-r154

    Google Scholar 

  20. HughesJMX, KoningsDAM & CesareniG (1987) EMBO J. 6: 2145–2155

    Google Scholar 

  21. TinokoJ, BorerPN, DenglerB, SevineH, UhlenbeckOC, CrotersDM & GrallaJ (1973) Nature New Biol. 246: 40–41

    Google Scholar 

  22. NazarRN, SitzThO & BuschH (1975) J. Biol. Chem. 250: 8591–8597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupriyanova, N.S., Timofeeva, M.Y. 32S pre-rRNA processing: a dynamic model for interaction with U3RNA and structural rearrangements of spacer regions. Mol Biol Rep 13, 91–96 (1988). https://doi.org/10.1007/BF00539056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539056

Key words

Navigation