Advertisement

Mammalian Genome

, Volume 6, Issue 11, pp 798–801 | Cite as

Mapping of the calcium-sensing receptor gene (CASR) to human Chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat Chromosome 11 and mouse Chromosome 16

  • N. Janicic
  • E. Soliman
  • Z. Pausova
  • M. F. Seldin
  • M. Rivière
  • J. Szpirer
  • C. Szpirer
  • G. N. Hendy
Original Contributions

Abstract

The calcium-sensing receptor (CASR), a member of the G-protein coupled receptor family, is expressed in both parathyroid and kidney, and aids these organs in sensing extracellular calcium levels. Inactivating mutations in the CASR gene have been described in familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). Activating mutations in the CASR gene have been described in autosomal dominant hypoparathyroidism and familial hypocalcemia. The human CASR gene was mapped to Chromosome (Chr) 3q13.3-21 by fluorescence in situ hybridization (FISH). By somatic cell hybrid analysis, the gene was localized to human Chr 3 (hybridization to other chromosomes was not observed) and rat Chr 11. By interspecific backcross analysis, the Casr gene segregated with D16Mit4 on mouse Chr 16. These findings extend our knowledge of the synteny conservation of human Chr 3, rat Chr 11, and mouse Chr 16.

Keywords

Hyperparathyroidism Hypoparathyroidism Somatic Cell Hybrid Familial Hypocalciuric Hypercalcemia Interspecific Backcross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, D.T. (1985). The information content of phase-known matings for ordering genetic loci. Genet. Epidemiol. 2, 349–361.Google Scholar
  2. Boyle, A.L., Feltquite, D.M., Dracopoli, N.C., Housman, D.E., Ward, D.C. (1992). Rapid physical mapping of cloned DNA on banded mouse chromosomes by fluorescence in situ hybridization. Genomics 12, 106–115.Google Scholar
  3. Brown, E.M., Gamba, G., Riccardi, D., Lombardi, M., Butters, R., Kifor, O., Sun, A., Hediger, M.A., Lytton, J., Hebert, S.C. (1993). Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580.Google Scholar
  4. Chou, Y.-H.W., Brown, E.M., Levi, T., Crowe, G., Atkinson, A.B., Arnquist, H.J., Toss, G., Fuleihan, G.E.-H., Seidman, J.G., Seidman, C.E. (1992). The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nature Genet. 1, 295–299.Google Scholar
  5. Finegold, D.N., Armitage, M.M., Galiani, M., Matise, T.C., Pandian, M.R., Perry, Y.M., Deka, R., Ferrell, R.E. (1994). Preliminary localization of a gene for autosomal dominant hypoparathyroidism to chromosome 3q13. Pediatr. Res. 36, 414–417.Google Scholar
  6. Garrett, J.E., Capuano, I.V., Hammerland, L.G., Hung, B.C.P., Brown, E.M., Hebert, S.C., Nemeth, E.F., Fuller, F. (1995). Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J. Biol. Chem. 270, 12919–12925.Google Scholar
  7. Green, E.L. (1981). Linkage, recombination and mapping. In Genetics and Probability in Animal Breeding Experiments, E. Green, ed. (New York: Macmillan), pp. 77–113.Google Scholar
  8. Heath, H., III., Jackson, C.E., Otterud, B., Leppert, M.F. (1993). Genetic linkage analysis in familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. Am. J. Hum. Genet. 53, 193–200.Google Scholar
  9. Heath, H., III, Odelberg, S., Brown, D., Hill, V.M., Robertson, M., Jackson, C.E., Teh, B.T., Hayward, N., et al. (1994). Sequence analysis of the parathyroid cell calcium receptor (CaR) gene in familial benign hypercalcemia (FBH): a multiplicity of mutations? J. Bone Miner. Res. 9(Suppl 1). C426.Google Scholar
  10. Heng, H., Tsui, L.-C. (1993). Modes of DAP1 banding and simultaneous in situ hybridization. Chromosoma 102, 325–332.Google Scholar
  11. Hino, O., Testa, J.R., Buetow, K.H., Taguchi, T., Zhou, J.-Y., Bremer, M., Bruzel, A., Yeung, R., Levan, G., Levan, K., Knudson, A.G., Tartof, K.D. (1993). Universal mapping probes and the origin of human chromosome 3. Proc. Natl Acad. Sci. USA 90, 730–734.Google Scholar
  12. Janicic, N., Pausova, Z., Cole, D.E.C., Hendy, G.N. (1995). Insertion of an Alu sequence in the Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am. J. Hum. Genet. 56, 880–886.Google Scholar
  13. Levan, G., Szpirer, J., Szpirer, C., Klinga, K., Hanson, H., and Islam, M.Q. (1991). The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10, 699–718.Google Scholar
  14. Lichter, P., Tang, C.J., Call, K., Hermanson, G., Evans, G.A., Houseman, D., Ward, D. (1990). High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.Google Scholar
  15. Nadeau, J.H., Davisson, M.T., Doolittle, D.P., Grant, P., Hillyard, A.L., Kosowsky, M., and Roderick, T.H. (1991). Comparative map for mice and humans. Mamm. Genome 1, S461-S515.Google Scholar
  16. Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.Google Scholar
  17. Pausova, Z., Bourdon, J., Clayton, D., Mattei, M.G., Seldin, M.F., Janicic, N., Rivière, M., Szpirer, J., Levan, G., Szpirer, C., Goltzman, D., Hendy, G.N. (1994). Cloning of a parathyroid hormone/parathyroid hormonerelated peptide (PTHRP) cDNA from a rat osteosarcoma (UMR 106) cell line: chromosomal assignment of the gene in the human, mouse, and rat genomes. Genomics 20, 20–26.Google Scholar
  18. Pearce, S.H.S., Trump, D., Woodling, C., Besser, G.M., Chew, S.L., Heath, D.A., Hughes, I.A., Thakker, R.V. (1994). Four novel mutations in the calcium-sensing receptor gene associated with familial benign (hypocalciuric) hypercalceamia. J. Bone Miner. Res. 96(Suppl 1), 99.Google Scholar
  19. Perry, Y.M., Finegold, D.N., Armitage, M.M., Ferrell, R.E. (1994). Missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism. Am. J. Hum. Genet. Suppl. 55, 79.Google Scholar
  20. Pollak, M.R., Brown, E.M., Chou, Y-H.W., Herbert, S.C., Marx, S.J., Steinmann, B., Levi, T., Seidman, C.E., Seidman, J.G. (1993). Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75, 1297–1303.Google Scholar
  21. Pollak, M.R., Brown, E.M., Estep, H.L., McLaine, P.N., Kifor, O., Park, J., Herbert, S.C., Seidman, C.E., Seidman, J.G. (1994). Autosomal dominant hypocalcemia caused by a Ca2+-sensing receptor gene mutation. Nature Genet. 8, 303–307.Google Scholar
  22. Reeves, R.H., Citron, M.P. (1994) Mouse Chromosome 16. Mamm. Genome 5 (Suppl.), S217-S228.Google Scholar
  23. Reeves, R.H., Crowley, M.R., Moseley, W.S., Seldin, M.F. (1991). Comparison of interspecific to intersubspecific backcrosses demonstrates species and sex differences in recombination frequency on mouse Chromosome 16. Mamm. Genome 1, 158–164.Google Scholar
  24. Riccardi, D.R., Park, J., Lee, W-S., Gamba, G., Brown, E.M., Herbert, S.C. (1995). Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc. Natl. Acad. Sci USA 92, 131–135.Google Scholar
  25. Ruat, M., Molliver, M.E., Snowman, A.M., Snyder, S.H. (1995). Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc. Natl. Acad. Sci. USA 92, 3161–3165.Google Scholar
  26. Saunders, A.M., Seldin, M.F. (1990). A molecular genetic linkage map of mouse chromosome 7. Genomics 8, 524–535.Google Scholar
  27. Seldin, M.F., Morse, H.C., Reeves, J.P., Scribner, J.P., LeBoeuf, R.C., Steinberg, A.D. (1988) Genetic analysis of autoimmune gld mice. I. Identification of a restriction fragment length polymorphism linked to the gld mutation within a conserved linkage group. J. Exp. Med. 167, 688–693.Google Scholar
  28. Southern, E. (1975). Detection of specific sequences among DNA gragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.Google Scholar
  29. Takada, F., Seki, N., Matsuda, Y-I., Takayama, Y., Kawakami, M. (1995). Localization of the genes for the 100-kDa complement activating components of Ra-reactive factor (CRARF and Crarf) to human 3q27-q28 and mouse 16B2-B3. Genomics 25, 757–759.Google Scholar
  30. Trump, D., Whyte, M.P., Wooding, C., Pang, J.T., Pearce, S.H.S., Kocher, D.B., Thakker, R.V. (1995). Linkage studies in a kindred from Oklahoma, with familial benign (hypocalciuric) hypercalcaemia (FBH) and development elevations in serum parathyroid hormone levels, indicate a third locus for FBH. Hum. Genet. 96, 183–187.Google Scholar
  31. Watson, M.L., Seldin, M.F. (1994). Application of mouse crosses towards defining the genetics of disease phenotypes. Methods Mol. Genet. 5, 369–387.Google Scholar
  32. Watson, M.L., D'Eustachio, P., Mock, B.A., Steinberg, A.D., Morse, H.C. III, Oakey, R.J., Howard, T.A., Rochelle, J.M., Seldin, M.F. (1992). A linkage map of mouse chromosome 1 using an interspecific cross segregating for the gld autoimmunity mutation. Mamm. Genome 2, 158–171.Google Scholar
  33. Yamada, J., Kuramoto, T., Serikawa, T. (1994). A rat genetic linkage map and comparative maps for mouse or human homologous rat genes. Mamm. Genome 5, 63–83.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • N. Janicic
    • 1
    • 2
    • 3
  • E. Soliman
    • 1
    • 2
    • 3
  • Z. Pausova
    • 1
    • 2
    • 3
  • M. F. Seldin
    • 4
    • 5
  • M. Rivière
    • 6
  • J. Szpirer
    • 6
  • C. Szpirer
    • 6
  • G. N. Hendy
    • 1
    • 2
    • 3
  1. 1.Calcium Research LaboratoryMcGill University and Royal Victoria HospitalMontrealCanada
  2. 2.Department of MedicineMcGill University and Royal Victoria HospitalMontrealCanada
  3. 3.Department of PhysiologyMcGill University and Royal Victoria HospitalMontrealCanada
  4. 4.Department of MedicineDuke University Medical CenterDurhamUSA
  5. 5.Department of MicrobiologyDuke University Medical CenterDurhamUSA
  6. 6.Département de Biologie MoleculaireUniversité Libre de BruxellesRhode-St-GenèseBelgium

Personalised recommendations