On Fatou's Lemma in several dimensions

  • Werner Hildenbrand
  • Jean -François Mertens
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.J.: Integrals of set-valued functions. Jour. math. Analysis Appl. 12, 1–12 (1965).Google Scholar
  2. 2.
    —: Measurable utility and measurable choice theorem. La Décision, Editions du Centre Nationale de la Recherche Scientifique, 15–26, Paris, 1969.Google Scholar
  3. 3.
    Debreu, G.: Integration of correspondences. Proc. Fifth Berkeley Sympos. math. Statist. Probab., p. 351–372. Berkeley: University of California Press 1968.Google Scholar
  4. 4.
    Dunford, N., Schwartz, J.T.: Linear operators, part I. New York: Interscience 1958.Google Scholar
  5. 5.
    Eggleston, H.G.: Convexity. Cambridge: Cambridge University Press 1958.Google Scholar
  6. 6.
    Hildenbrand, W.: On economies with many agents. Jour. of Econ. Theory 2, 161–188 (1970).Google Scholar
  7. 7.
    —: Existence of equilibria for economies with production and a measure space of consumers. Econometrica 38, 608–623 (1970).Google Scholar
  8. 8.
    - Mertens, J.F.: Upper hemi-continuity of the equilibriumset correspondence. (To appear.)Google Scholar
  9. 9.
    Schmeidler, D.: Fatou's lemma in several dimensions. Proc. Amer. math. Soc. 24, 300–306 (1970).Google Scholar
  10. 10.
    - Games with infinitely many players. Ph. D. Theses, The Hebrew University of Jerusalem.Google Scholar
  11. 11.
    Yoshida, K., Hewitt, E.: Finitely additive measures. Trans. Amer. math. Soc. 72, 46–66 (1952).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Werner Hildenbrand
    • 1
  • Jean -François Mertens
    • 2
  1. 1.Wirtschaftstheoretische Abt.Universität BonnBonn
  2. 2.Center for Operations Research and EconometricsKatholieke Universiteit te Leuven COREHeverleeBelgium

Personalised recommendations