Skip to main content
Log in

Identification of vortex motions in turbulent mixing of choked jets

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A specially adapted schlieren system is used to generate fluctuating signals which respond strongly to large scale coherent components of a turbulent mixing jet flow and which have a relatively reduced response to random disturbances. The schlieren signals also provide a direct indication of the presence of vortex-like structures in the turbulent mixing layers by virtue of the phase relationship of the schlieren signals to the pressure field. This system gives a clear resolution of the fluctuating periodic effects associated with vortex structures in the flow from a choked convergent nozzle. It has thus been possible to determine that vortex-like eddies are associated with the feedback screech mechanism, and also generate periodic disturbances due to their passage through the diamond shaped wave structure in the flow. The regular disturbances in the flow move at 0.77 of the fully expanded flow velocity. Phase spectral observations demonstrate clearly the vortex like structure of coherent disturbances in the flow by virtue of the quadrature phase relation between the schlieren and microphone signals. Movement of the sensing microphone in the pressure field external to the flow shows disturbance propagation at the acoustic velocity, and also shows that disturbances at Strouhal numbers above 0.7 emanating from the inner mixing zone can be identified by an additional time delay to reach the microphone and only influence the microphone when it is located downstream of the flow sensing schlieren system due to confinement of pressure disturbances within Mach cones of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Crow, S.; Champagne, F. H. 1971: Orderly structure in jet turbulence. Fluid Mech. 48, 547–591

    Google Scholar 

  • Dash, S. M.; Pergament, H. S. 1980: A computational system for the analysis of mixing/chemical/shock processes in supersonic internal and exhaust flume flowfields. AIAA Pap. 80-1255

  • Dash, S. M.; Thorpe, R. D. 1981: Shock capturing model for one and two phase supersonic exhaust flow. AIAA J. 18, 842–851

    Google Scholar 

  • Dash, S. M.; Wolf, D. E. 1983: Interactive phenomena in supersonic jet mixing problems. AIAA Pap. 83-0288

  • Dash, S. M.; Wolf, D. E. 1984: Interactive phenomena in supersonic jet mixing problems, part 1: Phenomenology and numerical modelling techniques. AIAA J. 22, 903–913

    Google Scholar 

  • Dash, S. M.; Wolf, D. E. 1984: Interactive phenomena in supersonic jet mixing problems, part 2: Numerical studies. AIAA J. 22, 1395–1404

    Google Scholar 

  • Dash, S. M.; Wolf, D. E.; Seiner, J. H. 1985: Analysis of turbulent underexpanded jets, part 1: Parabolized Navier-Stokes model SCIPVIS. AIAA J. 23, 505–514

    Google Scholar 

  • Davies, P.O.A.L.; Fisher, M. J. 1963: The characteristics of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337–367

    Google Scholar 

  • Davis, M. R. 1975: Intensity, scale and convection of turbulent density fluctuations. J. Fluid Mech. 70, 463–479

    Google Scholar 

  • Davis, M. R. 1982: Coherence between large scale jet mixing structure and its pressure field. J. Fluid Mech. 116, 31–57

    Google Scholar 

  • Emden, R. 1899: Über die Ausströmungserscheinungen permanenter Gase. Ann. Phys. Chem. 69, 426

    Google Scholar 

  • Fisher, M. J.; Lush, P. A.; Harper-Bourne, M. 1973: Jet noise. J. Sound Vib. 28, 563–585

    Google Scholar 

  • Hammitt, A. G. 1961: The oscillation and noise of an overpressure sonic jet. J. Aerosp. Sci. 28, 673–680

    Google Scholar 

  • Harper-Bourne, M.; Fisher, M. J. 1973: The noise from shock waves in supersonic jets. AGARD CP-131. Proc. of the AGARD Conference on Noise Mechanisms, Bruxelles, Belgium

  • Howe, M. S.; Ffowcs Williams, J. E. 1978: On the noise generated by an imperfectly expanded supersonic jet. Philos. Soc. London Ser. A 289, 271–314

    Google Scholar 

  • Lau, J. C. 1979: The vortex structure of turbulent jets, part 1: J. Fluid Mech. 67, 299–337. Part 2: Proc. R. Soc. London Ser. A 368, 547–571

    Google Scholar 

  • Lau, J. C.; Morris, P. J.; Fisher, M. J. 1979: Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93, 1–27

    Google Scholar 

  • Lighthill, M. J. 1953: On the energy scattered from the interaction of turbulence with sound or shock waves. Proc. Cambridge Philos. Soc. 49, 531–551

    Google Scholar 

  • McLaughlin, D. K.; Morrison, G. L.; Troutt, T. R. 1975: Experiments on the instability waves in supersonic jets and their acoustic radiation. J. Fluid Mech. 69, 73–95

    Google Scholar 

  • McLaughlin, D. K.; Seiner, J. M.; Lui, C. H. 1980: On the noise generated by large scale instabilities in supersonic jets. AIAA Pap. 80-0964

  • Middleton, D. 1963: Shock tones in supersonic jets. Aeronautical Research Council, Rep. and Mem. No. 3389

  • Milne Thomson, L. M. 1949: Theoretical hydrodynamics. London: MacMillan

    Google Scholar 

  • Norum, T. D.; Seiner, J. M. 1982: Broadband shock noise from supersonic jets. AIAA J. 20, 68–73

    Google Scholar 

  • Pack, D. C. 1950: A note on Prandtl's formula for the wavelength of a supersonic gas jet. Quart. J. Mech. Appl. Math. 3, 173 181

    Google Scholar 

  • Pao, S. P.; Seiner, J. M. 1981: A theoretical and experimental investigation of shock associated noise in supersonic jets. AIAA Pap. 81-1973

  • Powell, A. 1953a: On the noise emanating from a two dimensional jet above the critical pressure. Aeronaut. Q. 4, 103–122

    Google Scholar 

  • Powell, A. 1953b: On the mechanisms of choked jet noise. Proc. Phys. Soc. London Sect. A 66, 1039–1056

    Google Scholar 

  • Powell, A. 1954: The influence of exit velocity profile on the noise of a jet. Aeronaut. Q. 4, 341–360

    Google Scholar 

  • Prandtl, L. 1904: Über die stationären Wellen in einem Gasstrahl. Phys. Z. 5, 599–601

    Google Scholar 

  • Ribner, H. S. 1969: Acoustic energy flux from shock turbulence interaction. J. Fluid Mech. 35, 299–310

    Google Scholar 

  • Seiner, J. M.; Dash, S. M.; Wolf, D. E. 1985: Analysis of turbulent underexpanded jets, part 2: Shock features using SCIPVIS. AIAA J. 23, 669–677

    Google Scholar 

  • Seiner, J. M.; Norum, T. D. 1979: Experiments of shock associated noise on supersonic jets. AIAA Pap. 79-1526

  • Seiner, J. M.; Norum, T. D. 1980: Aerodynamic aspects of shock containing jet plumes. AIAA Pap. 80-0965

  • Seiner, J. M.; Yu, J. C. 1981: Acoustic near field and local flow properties associated with broadband shock noise. AIAA Pap. 81-1975

  • Tam, C. K. W. 1975: Supersonic jet noise generated by large scale disturbances. J. Sound Vib. 38, 51–79

    Google Scholar 

  • Tam, C. K. W.; Jackson, J. A.; Seiner, J. M. 1985: A multiple scale model of the shock cell structure of imperfectly expanded supersonic jets. J. Fluid Mech. 153, 123–149

    Google Scholar 

  • Tam, C. K. W.; Tanna, H. K. 1982: Shock associated noise of supersonic jets from convergent nozzles. J. Sound Vib. 81, 337–358

    Google Scholar 

  • Tanna, H. K. 1977: An experimental study of jet noise, part 2: Shock associated noise. J. Sound Vib. 50, 429–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M.R. Identification of vortex motions in turbulent mixing of choked jets. Experiments in Fluids 6, 335–343 (1988). https://doi.org/10.1007/BF00538825

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538825

Keywords

Navigation