Experiments in Fluids

, Volume 6, Issue 5, pp 298–304 | Cite as

Measurements of turbulent and periodic flows around a square cross-section cylinder

  • D. F. G. Durão
  • M. V. Heitor
  • J. C. F. Pereira


Laser-Doppler measurements of the velocity characteristics are presented for the turbulent flow around a square cross-section cylinder mounted in a water channel for Re=14000. The study involved spectral analysis and digital filtering of the LDV data obtained behind the cylinder. The purpose of the measurements is to separate and quantify the turbulent and the periodic, non-turbulent, motions of the wake flow, in order to improve knowledge of the nature of the fluctuations in the near-wake region of two-dimensional bodies. The results show, for example, that in the zone of highest velocity oscillations the energy associated with the turbulent fluctuations is about 40% of the total energy.


Total Energy Spectral Analysis High Velocity Water Channel Periodic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. J.; Yao, C. S. 1985: Power spectra of fluid velocities measured by laser Doppler velocimetry. ASME, Winter Annual Meeting, Miami Beach/FL, November 15–22, 1985Google Scholar
  2. Bearman, P. W. 1984: Vortex shedding from oscillating bluff bodies. Ann. Rev. Fluid Mech. 16, 195–222Google Scholar
  3. Bendat, J. S.; Piersol, A. G. 1971: Random data: analysis and measurement procedures. New York: Wiley-InterscienceGoogle Scholar
  4. Bradbury, L. J. S. 1976: Measurements with a pulsed-wire and a hot-wire anemometer in the highly turbulent wake of a normal flat plate. J. Fluid Mech. 77, 473–497Google Scholar
  5. Bradshaw, P.; Ferriss, D. H.; Atwell, N. P. 1967: Calculation of boundary layer development using the turbulent energy equation. J. Fluid Mech. 28, 593–616Google Scholar
  6. Castro, I. P. 1985:Time-domain measurements in separated flows. J. Fluid Mech. 150, 183–201Google Scholar
  7. Celenligil, M. C.; Mellor, G. L. 1985: Numerical solution of two-dimensional turbulent separated flows using a Reynolds stress closure model. J. Fluids Eng. 107, 467–476Google Scholar
  8. Durão, D. F. G.; Durst, F.; Firmino, F. 1984: Velocity characteristics of the flow around cones. Proc. 2nd Int. Symp. on Appl. of LA to Fluid Mech. Pap. 15.2, Lisbon, July 1984Google Scholar
  9. Durão, D. F. G.; Heitor, M. V.; Pereira, J. C. F. 1986a: The flow around a squared obstacle. 67th AGARD-PEP Conference, Philadelphia, May 19–23Google Scholar
  10. Durão, D. F. G.; Heitor, M. V.; Pereira, J. C. F. 1986b: A Laser anemometry study of separated flow around a squared obstacle. In: Laser anemometry in fluid mechanics III (eds Adrian, R. J. et al.), pp. 227–243. LADOAN-IST, Lisbon, PortugalGoogle Scholar
  11. Durão, D. F. G.; Whitelaw, J. H. 1978: Velocity characteristics of the flow in the near wake of a disc. J. Fluid Mech. 85, 369–385Google Scholar
  12. Edwards, R. V.; Jensen, A. S. 1983: Particle-sampling statistics in laser anemometers: sample-and-hold and saturable systems. J. Fluid Mech. 133, 397–411Google Scholar
  13. Fujii, S.; Gomi, M.; Eguchi, K. 1978: Cold flow tests of a bluff-body flame stabilizer. J. Fluids Eng. 100, 323–332Google Scholar
  14. Gerrard, J. H. 1966: The mechanism of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25, 401–413Google Scholar
  15. Harsha, P. T.; Lee, S.C. 1970: Correlation between turbulent shear stress and turbulent kinetic energy. AIAA J. 8, 1508–1510Google Scholar
  16. Heitor, M. V.; Laker, J. R.; Taylor, A. M. K. P.; Vafidis, C. 1984: Instruction manual for the FS “model 2” Doppler-frequency counter. Imperial College, London, Dept. Mech. Eng., Rep. FS/84/10Google Scholar
  17. Lading, L. 1985: Spectral analysis versus counting. ASME, Winter Annual Meeting, Miami Beach/FL, November 17–22Google Scholar
  18. Majumdar, S.; Rodi, W. 1985: Numerical calculations of turbulent flow past circular cylinders. 3rd Symp. on Numerical and Physical Aspects of Aerodynamic Flows. Long Beach/CA, January 21–24Google Scholar
  19. Maclennan, A. S. M.; Vincent, J. H. 1982: Transport in the near aerodynamic wakes of flat plates. J. Fluid Mech. 120, 185–197Google Scholar
  20. McKillop, A. A.; Durst, F. 1986: A laser anemometry study of separated flow behind a circular cylinder. In: Laser anemometry in fluid mechanics II (eds. Adrian, R. J. et al.) LADOAN-IST, Lisbon, PortugalGoogle Scholar
  21. Okajima, A. 1982: Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398Google Scholar
  22. Saxena, V. 1985: Power spectrum estimation from randomly sampled velocity data. ASME Winter Annual Meeting, Miami Beach/FL, November 17–22Google Scholar
  23. Srikantaiah, D. V.; Coleman, H. W. 1985: Turbulence spectra from individual realization laser velocimetry data. Exp. Fluids 3, 35–44Google Scholar
  24. Taylor, A. M. K. P; Whitelaw, J. H.. 1984: Velocity characteristics in the turbulent near wakes of confined axisymmetric bluff bodies. J. Fluid Mech. 139, 391–416Google Scholar
  25. Yanta, W. J.; Smith, R. A. 1978: Measurements of turbulent-transport properties with a laser Doppler velocimeter. AIAA Pap. 73–169,11th Aerospace Science Meeting, Washington/DCGoogle Scholar
  26. Yeh, T. T.; Robertson, B.; Mattar, W. M. 1982: LDV measurements near a vortex shedding strut mounted in a pipe. ASME Winter Annual Meeting, Phoenix/AZ, November, 14–19Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • D. F. G. Durão
    • 1
  • M. V. Heitor
    • 1
  • J. C. F. Pereira
    • 1
  1. 1.Mechanical Engineering Dept.Instituto Superior TecnicoLisbon CodexPortugal

Personalised recommendations