Point processes and completely monotone set functions

  • Thomas G. Kurtz
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Point Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choquet, G.: Theory of Capacities. Ann. Inst. Fourier 5, 131–295 (1953)Google Scholar
  2. 2.
    Daley, D.J., Vere-Jones, D.: A summary of the theory of stochastic point processes. Stochastic Point Processes, P.A.W. Lewis, editor. 299–383. New York: Wiley 1972Google Scholar
  3. 3.
    Fisher, L.: A survey of the mathematical theory of multi-dimensional point processes. Stochastic Point Processes, P.A.W. Lewis, editor. 468–513. New York: Wiley 1972Google Scholar
  4. 4.
    Kallenberg, O.: Characterization and convergence of random measures and point processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 27, 9–21 (1973)Google Scholar
  5. 5.
    Kendall, D.G.: Foundations of a theory of random sets. Stochastic Geometry. E.F. Harding and D.G. Kendall, ed. New York: Wiley 1973Google Scholar
  6. 6.
    Mathéron, G.: Ensembles fermes aléatoires, ensembles semi-markoviens et polyédras poissoniens. Advances in Appl. Probability 4, 508–541 (1972)Google Scholar
  7. 7.
    Meyer, Paul A.: Probability and Potentials. Massachusetts: Blaisdell 1966Google Scholar
  8. 8.
    Mönch, G.: Verallgemeinerung eines Satzes von A. Rényi, Studia Sci. Math. Hungar. 6, 81–90 (1971)Google Scholar
  9. 9.
    Rényi, A.: Remarks on the Poisson process. Studia Sci. Math. Hungar. 2, 119–123 (1967)Google Scholar
  10. 10.
    Rudin, W.: Real and Complex Analysis. New York: McGraw Hill 1966Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Thomas G. Kurtz
    • 1
  1. 1.Dept. of Math.University of WisconsinMadisonUSA

Personalised recommendations