Hydroxylamino- und Nitrosobiphenyl: Biologische Oxydationsprodukte von 4-Aminobiphenyl und Zwischenprodukte der Reduktion von 4-Nitrobiphenyl

  • H. Uehleke
  • K. Nestel


Hydroxylaminobiphenyl Nitrosobiphenyl Reduktion von Nitrobiphenyl Aminobiphenyl Leber 

Hydroxylaminobiphenyl and nitrosobiphenyl: Biological oxidation products of 4-aminobiphenyl and reduction metabolites of 4-nitrobiphenyl


1. Improved and modified techniques for preparation and estimation of 4-nitrosobiphenyl and 4-aminobiphenyl are presented.

2. 20 min after intraperitoneal injections of 0.3 mmoles/kg 4-aminobiphenyl the concentration of 4-nitrosobiphenyl in the blood of cats was found to be 17 mμmoles (3.1 μg)/ml. The nitroso compound was extracted, separated on thin layer plates and identified by means of UV-absorption and by complexing with pentacyanoamminferrat (II).

3. 38% of total haemoglobin was oxidized to methaemoglobin 40 min after injection of 0.3 mmoles/kg 4-aminobiphenyl in cats.

4. 4-Nitrosobiphenyl and 4-hydroxylaminobiphenyl oxidized haemoglobin in red cells of cows and cats more rapidly than nitrosobenzene.

5. The velocity of N-hydroxylation of 4-aminobiphenyl by rat liver microsomes, NADPH and O2 was 0.39 mμmoles (0.072 μg)/mg microsomal protein in one minute. Rabbit liver microsomes were revealed to be more active. Pretreatment of rabbits with phenobarbital increased the specific N-hydroxylation activity of liver micro-somes about 3 times.

6. 25% of 4-nitrobiphenyl were reduced to 4-aminobiphenyl within 40 min during anaerobic reduction in the presence of soluble rat liver proteins with NADPH and flavin mononucleotide. The presence of 4-nitrosobiphenyl was demonstrated during reduction. The rate of reduction of 4-nitrosobiphenyl was found to be 4 times higher than that of 4-nitrobiphenyl. Only 6% of 2-nitrofluorene were reduced after 40 min under the same conditions.


Hydroxylaminobiphenyl Nitrosobiphenyl Reduction of Nitrobiphenyl Aminobiphenyl Liver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcos, J. C., and M. Arcos: Molecular geometry and mechanisms of action of chemical carcinogens. Fortschr. Arzneimittel-Forsch. 4, 481 (1962).Google Scholar
  2. Armeli, G.: Preliminary observations on the cytological control examinations carried out on workers exposed to aromatic amines. Med. d. Lavoro 56, 264 (1965).Google Scholar
  3. Bamberger, E.: Notiz über die Diazotierung des Nitroso-benzols. Chem. Ber. 51, 634 (1918).Google Scholar
  4. Bell, F., J. Kenyon, and P. H. Robinson: Diphenyl series. I. Migration reactions. J. chem. Soc. 1926, 1232.Google Scholar
  5. Booth, J., and E. Boyland: The biochemistry of aromatic amines: 10. Enzymatic N-hydroxylation of arylamines and conversion of arylhydroxylamines into o-aminophenols. Biochem. J. 91, 362 (1964).Google Scholar
  6. Boyland, E., and D. Manson: The biochemistry of aromatic amines. The metabolism of 2-naphthylamine and 2-naphthylhydroxylamine derivatives. Biochem. J. 101, 84 (1966).Google Scholar
  7. Burger, A., J. Wagner, H. Uehleke u. E. Götz: Beeinflussung von Pentosephosphatcyclus und Glykolyse in Erythrocyten während der Methämoglobinbildung durch Phenylhydroxylamin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 333 (1967).Google Scholar
  8. Clayson, D. B.: The aromatic amines. Brit. med. Bull. 20, 115 (1964).Google Scholar
  9. Cramer, J. W., J. A. Miller, and E. C. Miller: N-hydroxylation: A new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene. J. biol. Chem. 235, 885 (1960).Google Scholar
  10. Crick, J., and H. Jackson: A tracer study of the metabolism of p-iodophenyl urethane; the selective localisation of radioactive material. Brit. J. Pharmacol. 7, 142 (1952).Google Scholar
  11. —— —— The selective localisation of p-radioiodophenylhydroxylamine in red cells: its relation to methaemoglobinaemia. Brit. J. Pharmacol. 8, 87 (1953).Google Scholar
  12. Debackere, M., and H. Uehleke: C- and N-hydroxylation of aromatic amines by isolated liver microsomes of different species. In: Some factors affecting drug toxicity, Proc. Europ. Soc. Study of drug toxicity, Vol. IV, p. 40. Amsterdam: Excerpta Medica Foundation, 1964.Google Scholar
  13. Deichmann, W. B., M. M. Coplan, F. M. Woods, W. A. D. Anderson, J. Heglin, and J. Radomski: The carcinogenic action of p-aminobiphenyl in the dog. Arch. industr. Hlth. 13, 8 (1956).Google Scholar
  14. ——, and W. A. D. Anderson: p-nitrobiphenyl, a new bladder carcinogen in the dog. Industr. Med. Surg. 27, 634 (1958).Google Scholar
  15. Goldblatt, M. W., A. F. Henson, and A. R. Somerville: Metabolism of bladder carcinogens 3. The metabolic path of 2-[8-14C]-naphthylamine in several animal species. Biochem. J. 77, 511 (1960).Google Scholar
  16. Halpaap, H.: Präparative Dünnschichtchromatographie. Chemie-Ing.-Techn. 35, 488 (1963).Google Scholar
  17. Heringlake, R., M. Kiese, G. Renner u. W. Wenz: N-Oxydation von 2-Naphthylamin in vivo und Wirkungen von Oxydationsprodukten des 2-Naphthylamins. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 239, 370 (1960).Google Scholar
  18. Herr, F., u. M. Kiese: Bestimmung von Nitrosobenzol im Blute. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 235, 351 (1959).Google Scholar
  19. Heubner, W., R. Meier u. H. Rhode: Studien zur Methämoglobinbildung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 100, 149 (1923).Google Scholar
  20. Hustedt, G., u. M. Kiese: Umsetzungen von Acetanilid und Acetylphenylhydroxylamin im Organismus. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 236, 459 (1959).Google Scholar
  21. Irving, C. C.: N-Hydroxylation of the carcinogen 2-acetylaminofluorene by rabbitliver microsomes. Biochim. biophys. Acta (Amst.) 65, 564 (1962a).Google Scholar
  22. —— N-Hydroxylation of 2-acetylaminofluorene in the rabbit. Cancer Res. 22, 876 (1962b).Google Scholar
  23. Irving, C. C.: Enzymatic N-hydroxylation of the carcinogen 2-acetylaminofluorene and the metabolism of N-hydroxy-2-acetylaminofluorene-9-14C in vitro. J. biol. Chem. 239, 1589 (1964).Google Scholar
  24. —— Enzymatic deacetylation of N-hydroxy-2-acetylaminofluorene by liver micro-somes. Cancer Res. 26, 1390 (1966).Google Scholar
  25. Jagow, R. von, M. Kiese, G. Renner u. I. Wiedemann: Ausscheidung von N-Hydroxylierungsprodukten aromatischer Amine in Harn und Galle. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 47 (1966).Google Scholar
  26. Kiese, M., G. Renner, and I. Wiedemann: N-Hydroxylation of 2-aminofluorene in the guinea pig and by guinea pig liver microsomes in vitro. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 252, 418 (1966).Google Scholar
  27. ——, u. H. D. Waller: Die Stoffwechselvorgänge bei der Hämiglobinbildung durch den Kreisprozeß Phenylhydroxylamin und Nitrosobenzol. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 211, 345 (1950).Google Scholar
  28. Laham, S.: Biological conversion of 4-nitrobiphenyl to an active carcinogen. Canad. J. Biochem. 38, 1383 (1960).Google Scholar
  29. Lipschitz, W. L.: Giftung und Entgiftung aromatischer Nitroverbindungen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 205, 305 (1948).Google Scholar
  30. Lotlikar, P. D., E. C. Miller, J. A. Miller, and A. Margreth: The enzymatic reduction of the N-hydroxy derivatives of 2-acetylaminofluorene and related carcinogens by tissue preparations. Cancer Res. 25, 1473 (1965).Google Scholar
  31. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265 (1951).Google Scholar
  32. Mattea, E.: Tumors of the bladder in workers handling aromatic amines; up to 1957. Tumori Suppl. No. 1, 103 (1958).Google Scholar
  33. Melamed, M. R., L. G. Koss, A. Ricci, and W. F. Whitmore: Cytohistological observations on developing carcinoma of the urinary bladder in man. Cancer 13, 67 (1960).Google Scholar
  34. Melick, W. F., H. M. Escue, J. J. Naryka, R. A. Mezera, and E. P. Wheeler: The first reported cases of human bladder tumors due to a new carcinogen: xenylamine. J. Urol. 74, 760 (1955).Google Scholar
  35. Mijs, W. J.: Structuur en eigenschappen van monomere en dimere aromatische nitrosoverbindungen. Dissertation, Naturwiss. Fakultät, Universität Leiden, Holland, 1959.Google Scholar
  36. ——, and E. Havinga: Synthesis and properties of aromatic nitroso-compounds. Rec. Trav. chim. Pays-Bas 77, 746 (1958).Google Scholar
  37. Miller, E. C., and J. A. Miller: Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules. Pharmacol. Rev. 18, 805 (1966).Google Scholar
  38. Miller, J. A., and E. C. Miller: Metabolism of drugs in relation to carcinogenicity. Ann. N. Y. Acad. Sci. 123, 125 (1965).Google Scholar
  39. ——, and H. A. Hartmann: The N-hydroxylation of 4-acetylaminobiphenyl by the rat and dog and the strong carcinogenicity of N-hydroxy-4-acetylaminobiphenyl in the rat. Cancer Res. 21, 1465 (1961).Google Scholar
  40. Murayama, M.: The combining power of normal human hemoglobin for nitrosobenzene. J. biol. Chem. 235, 1024 (1960).Google Scholar
  41. Nestel, K.: 4-Nitroso- und 4-Hydroxylaminobiphenyl, Synthesen und biologische Bildung. Dissertation, mathem.-naturwiss. Fakultät, Universität Tübingen, 1967.Google Scholar
  42. Otsuka, S.: Studies on nitro reducing enzymes of swine liver. J. Biochem. (Tokyo) 50, 87 (1961).Google Scholar
  43. Radomski, J. L., E. Brill, and W. B. Deichmann: The metabolism of 2-naphthylamine as related to bladder carcinogenesis. Industr. Med. Surg. 35, 567 (1966).Google Scholar
  44. Scheler, W.: Die Bindung von Nitrosobenzolderivaten an menschliches Hämoglobin. Naturwissenschaften 47, 399 (1960).Google Scholar
  45. Stahl, E.: Dünnschicht-Chromatographie, Ein Laboratoriumshandbuch. Berlin, Göttingen, Heidelberg: Springer 1962.Google Scholar
  46. Thauer, R. K., G. Stöffler u. H. Uehleke: N-Hydroxylierung von Sulfanilamid zu p-Hydroxylaminobenzolsulfonamid durch Lebermikrosomen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 252, 32 (1965).Google Scholar
  47. Troll, W., and N. Nelson: N-hydroxy-2-naphthylamine. An urinary metabolite of 2-naphthylamine in man and dog. Fed. Proc. 20, 41 (1961).Google Scholar
  48. Uehleke, H.: Relations between structure, velocity of biological N-hydroxylation and toxicity of aromatic amines. First Intern. Pharmacol. Meeting, Vol. 6, p. 31. London: Pergamon Press 1962, Stockholm 1961a.Google Scholar
  49. —— On the mechanism of enzymatic oxidation of aromatic amines and N-alkylanilines by liver microsomes. Fifth Intern. Congress of Biochemistry, Moskau 1961b, Abstracts p. 399, London: Pergamon Press 1961b.Google Scholar
  50. —— N-Hydroxylierung von 2-Aminofluoren durch Lebermikrosomen. Experientia (Basel) 17, 557 (1961c).Google Scholar
  51. -- Oxydation und Reduktion aromatischer Amino- und Nitroderivate im Organismus und ihre biologischen Folgen. Habilitationsschrift, Med. Fakultät Universität Tübingen, 1962.Google Scholar
  52. —— Stoffwechselprodukte aromatischer Amine als krebsauslösende Faktoren. 7. Tagung des Deutschen Zentralausschusses für Krebsforschung und Krebsbekämpfung. Sonderbd. Strahlentherapie 57, 131 (1964). Mainz 1963a.Google Scholar
  53. —— N-Hydroxylation of carcinogenic amines in vivo and in vitro with liver microsomes. Biochem. Pharmacol. 12, 219 (1963b).Google Scholar
  54. —— Stoffwechsel aromatischer Nitroverbindungen. Biochem. Pharmacol. 12, (Suppl.) 159 (1963c).Google Scholar
  55. —— Nitrosobenzol und Phenylhydroxylamin als Zwischenstoffe der biologischen Reduktion von Nitrobenzol. Naturwissenschaften 50, 335 (1963d).Google Scholar
  56. —— Biologische Oxydation und Reduktion am Stickstoff aromatischer Amino- und Nitroderivate und ihre Folgen für den Organismus. Fortschr. Arzneimittel-Forsch. 8, 195 (1964a).Google Scholar
  57. —— Nitrosobenzol im Blute von Katzen nach Verabreichung von Nitrobenzol. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 412 (1964b).Google Scholar
  58. -- Unveröffentlichte Versuche (1964c).Google Scholar
  59. —— N-Hydroxylierung carcinogener Amine in der Blasenschleimhaut. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 87 (1966a).Google Scholar
  60. —— N-Hydroxylation of arylamines by bladder mucosa. Life Sci. 5, 1489 (1966b).Google Scholar
  61. Walpole, A. L., M. H. C. Williams, and D. C. Roberts: Tumors of the urinary bladder in dogs after ingestion of 4-aminodiphenyl. Brit. J. industr. Med. 11, 105 (1954).Google Scholar
  62. Wasicky, R.: Thin-layer chromatography on microslides. Analyt. Chem. 34, 1346 (1962).Google Scholar
  63. Weisburger, J. H., P. H. Grantham, and E. K. Weisburger: Transport of carcinogens. Rat blood plasma and red cell binding of isotope after N-hydroxy-N-2-fluorenylacetamide. Life Sci. 5, 41 (1966).Google Scholar
  64. ——, and E. K. Weisburger: Pharmacodynamics of carcinogenic azo dyes, aromatic amines and nitrosamines. Clin. Pharmacol. Ther. 4, 110 (1963).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • H. Uehleke
    • 1
  • K. Nestel
    • 1
  1. 1.Pharmakologisches Institut der Universität TübingenGermany

Personalised recommendations