Advertisement

Approximation theorems for Markov operators

  • Choo-Whan Kim
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Approximation Theorem Markov Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, J.R.: Approximation theorems for Markov operators. Pacific J. Math. 16, 13–23 (1966).Google Scholar
  2. 2.
    Doob, J.L.: Stochastic processes. New York: Wiley 1953.Google Scholar
  3. 3.
    —: A ratio operator limit theorem. Z. Wahrscheinlichkeitstheorie verw. Geb. 1, 288–294 (1963).Google Scholar
  4. 4.
    Dunford, N., Schwartz, J.T.: Linear operators, part I. New York: Interscience 1967.Google Scholar
  5. 5.
    Halmos, P.R., Neumann, J. von: Operator methods in classical mechanics. Ann. of Math. II. Ser. 43, 332–350 (1942).Google Scholar
  6. 6.
    Helms, L.L.: Mean convergence of martingales. Trans. Amer. math. Soc. 87, 439–446 (1958).Google Scholar
  7. 7.
    Kim, C.W.: Uniform approximation of doubly stochastic operators. Pacific J. Math. 26, 515–527 (1968).Google Scholar
  8. 8.
    Marcus, M., Minc, H.: A survey of matrix theory and matrix inequalities. Boston: Allyn and Bacon 1964.Google Scholar
  9. 9.
    Moy, S.-T.C: λ-continuous Markov chains. Trans. Amer. math. Soc. 117, 68–91 (1965).Google Scholar
  10. 10.
    Neveu, J.: Mathematical foundations of the calculus of probability. San Francisco: Holden-Day 1965.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Choo-Whan Kim
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations