Skip to main content
Log in

Hormonal control of carbohydrate and lipid metabolism and drug induced alterations

  • Teil I Symposium
  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anderson, W. A., Jr., and E. Brown: The influence of arginine vasopressin upon the production of adenosine 3′,5′-monophosphate by adenyl cyclase from the kidney. Biochim. biophys. Acta (Amst.) 67, 674 (1963).

    Google Scholar 

  2. Ashman, D. F., R. Lipton, M. M. Melicow, and T. D. Price: Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem. biophys. Res. Commun. 11, 330 (1963).

    Google Scholar 

  3. Aulich, A., K. Stock, and E. Westermann: Lipolytic effects of cyclic adenosine-3′,5′-monophosphate and its butyryl derivatives in vitro, and their inhibition by α- and β-adrenolytics. Life Sci. 6, 929 (1967).

    Google Scholar 

  4. Aviram, A., M. Schalitt, N. Kassem, and J. J. Groen: Glucose utilisation, glutathione, potassium and sodium content of the isolated bovine lens. Clin. chim. Acta 14, 442 (1966).

    Google Scholar 

  5. Baer, J. E.: Pharmacology of diuretics. In: Renal and Diuretic Symposium, Rotterdam, Netherlands, October, 15 (1966) (in press).

  6. ——, and H. F. Russo: The potassium-sparing and natriuretic activity of n-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride dihydrate (amiloride hydrochloride). J. Pharmacol. exp. Ther. 157, 472 (1967).

    Google Scholar 

  7. Bartelheimer, H. K., W. Losert, G. Senft u. R. Sitt: Hemmung der extrarenalen Wirking von d-Aldosteron durch Actinomycin D. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 258, 372 (1967).

    Google Scholar 

  8. —— —— —— —— Störungen des Kohlenhydratstoffwechsels im Kaliummangel. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 258, 391 (1967).

    Google Scholar 

  9. Bergmann, K. von: Einfluß von d-Aldosteron, Triamteren und Amilorid auf die Aktivität mitochondraler, hyaloplasmatischer und mikrosomaler Enzyme in der Rattenniere. Thesis, prepared. Medical Faculty Freie Universität Berlin 1968.

  10. Blackard, W. G., and Ch. N. Aprill: Mechanism of action of diazoxide. J. Lab. clin. Med. 69, 960 (1967).

    Google Scholar 

  11. Bray, G. A.: Inhibition of glucose oxidation in adipose tissue by dibutyryl-adenosine-3′,5′-phosphate. Biochem. biophys. Res. Commun. 28, 621 (1967).

    Google Scholar 

  12. Brodie, B. B., J. I. Davies, S. Hynie, G. Krishna, and B. Weiss: Inter-relationships of catecholamines with other endocrine systems. Pharmacol. Rev. 18, 273 (1966).

    Google Scholar 

  13. Brown, E., D. L. Clarke, V. Roux, and G. H. Sherman: The stimulation of adenosine 3′,5′-monophosphate production by antidiuretic factors. J. biol. Chem. 238, PC 853 (1963).

    Google Scholar 

  14. Butcher, R. W., R. J. Ho, H. C. Meng, and E. W. Sutherland: Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515 (1965).

    Google Scholar 

  15. ——, and E. W. Sutherland Jr.: Effect of insulin on adenosine 3′,5′-monophosphate in the rat epididymal fat pad. J. biol. Chem. 241, 1651 (1966).

    Google Scholar 

  16. ——, and E. W. Sutherland: Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. biol. Chem. 237, 1244 (1962).

    Google Scholar 

  17. —— —— The effects of the catecholamines, adrenergic blocking agents, prostaglandin E1, and insulin on cyclic AMP levels in the rat epididymal fat pad in vitro. Ann. N.Y. Acad. Sci. 139, 849 (1967).

    Google Scholar 

  18. Cade, R., and T. Perenich: Secretion of aldosterone by rats. Amer. J. Physiol. 208, 1026 (1965).

    Google Scholar 

  19. Castles, T. R., and H. E. Williamson: Mediation of aldosterone induced antinatriuresis via RNA synthesis de novo. Proc. Soc. exp. Biol. (N.Y.) 124, 717 (1967).

    Google Scholar 

  20. Davoren, P. R., and E. W. Sutherland: The cellular location of adenyl cyclase in the pigeon erythrocyte. J. biol. Chem. 238, 3016 (1963).

    Google Scholar 

  21. Dies, F., and W. D. Lotspeich: Hexose monophosphate shunt in the kidney during acid-base and electrolyte imbalance. Amer. J. Physiol. 212, 61 (1967).

    Google Scholar 

  22. Drummond, G. I., and L. Duncan: Activation of cardiac phosphorylase-b-kinase. J. biol. Chem. 241, 5893 (1966).

    Google Scholar 

  23. Dulce, H.-J., u. Th. Günther: Steuerung des cellulären Elektrolyt- und Wassergehaltes durch Hormone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 238, 368 (1960).

    Google Scholar 

  24. Edelman, I. S.: Subcellular distribution and mode of action of aldosterone. In: Steroid Dynamics, edited by G. Pincus, T. Nako, and J. F. Tait p. 551. New York, London: Academic Press 1966.

    Google Scholar 

  25. —— Molecular process in steroid regulation of sodium transport. In: Second International Congress on Hormonal Steroids. Milan, Italy, May, 23–28 (1966), p. 43. Amsterdam, New York, Milan, Tokyo, Buenos Aires: Excerpta Media Foundation 1966.

    Google Scholar 

  26. -- Action of aldosterone on sodium transport. Abstract, International Congress of Nephrology, Wahington, D.C., September, 25–30 (1966), p. 67.

  27. Ernesti, M., M. L. Mitchell, M. S. Raben, and Y. Gilboa: Control of hyperglycemia with diazoxide and human growth hormone. Lancet 1965 1, 628.

    Google Scholar 

  28. Eyer, P., and D. Pette: Purification and properties of “glucose-1-phosphate kinase”. Life Sci. 6, 191 (1967).

    Google Scholar 

  29. Fain, J. N., V. P. Kovacev, and R. O. Scow: Antilipolytic effect of insulin in isolated fat cells of the rat. Endocrinology 78, 773 (1966).

    Google Scholar 

  30. ——, and S. S. Chernick: Effects of glucocorticoids on metabolism of adipose tissue in vitro. J. biol. Chem. 238 54 (1963).

    Google Scholar 

  31. Farah, A.: The effect of salt administration on the renal protein-bound sulf-hydryl concentration in the rat. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 1 (1964).

    Google Scholar 

  32. Fimognari, G. M., G. A. Porter, and I. S. Edelman: The role of the tricarboxylic acid cycle in the action of aldosterone on sodium transport. Biochim. biophys. Acta (Amst.) 135, 89 (1967).

    Google Scholar 

  33. Fisher, J. N., and E. G. Ball: Studies on the metabolism of adipose tissue. XX. The effect of thyroid status upon oxygen consumption and lipolysis. Biochemistry 6, 637 (1967).

    Google Scholar 

  34. Freedland, R. A., T. L. Cunliffe, and J. G. Zinkl: The effect of insulin on enzyme adaptions to diets and hormones. J. biol. Chem. 241, 5448 (1966).

    Google Scholar 

  35. Frerichs, H., R. Gerber u. W. Creutzfeld: Insulinsekretion in vitro. II. Hemmung der glucoseinduzierten Insulinabgabe durch Diazoxide. Diabetologia 2, 269 (1966).

    Google Scholar 

  36. —— u. W. Creutzfeld: Insulinsekretion in vitro. I. Hemmung der glucoseinduzierten Insulingabe durch Insulin. Klin. Wschr. 43, 136 (1965).

    Google Scholar 

  37. Gauer, O. H., and J. P. Henry: The circulatory basis of fluid volume control. Physiol. Rev. 43, 423 (1963).

    Google Scholar 

  38. Goebell, H., u. D. Pette: Die intracelluläre Verteilung von DPN- und TPN-spezifischer Isocitrat-Dehydrogenase. Enzymol. biol. clin. 8, 161 (1967).

    Google Scholar 

  39. Goldberg, I. H., M. Rabinowitz, and E. Reich: Basis of actinomycin action. I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc. nat. Acad. Sci. (Wash.) 48, 2094 (1962).

    Google Scholar 

  40. Goodman, A., R. E. Fuisz, and G. F. Cahill Jr.: Renal gluconeogenesis in acidosis, alkalosis and potassium deficiency: Its possible role in regulation of renal ammonia production. J. clin. Invest. 45, 612 (1966).

    Google Scholar 

  41. ——, and E. Knobil: Some endocrine factors in regulation of fatty acid mobilization during fasting. Amer. J. Physiol. 201, 1 (1961).

    Google Scholar 

  42. Gottschalk, C. W.: Micropuncture studies of tubular function in the mammalian kidney. Physiologist 4, 35 (1961).

    Google Scholar 

  43. Graber, A. L., D. Porte, and R. H. Williams: Clinical use of diazoxide and mechanism for its hyperglycemic effects. Diabetes 15, 143 (1966).

    Google Scholar 

  44. Grantham, J. J., and M. B. Burg: Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Amer. J. Physiol. 211, 255 (1966).

    Google Scholar 

  45. ——, and J. Orloff: Unpublished observations, cited by: Orloff, J., and J. S. Handler: The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone. Amer. J. Med. 42, 757 (1967).

    Google Scholar 

  46. Handler, L. S., R. Bensinger, and J. Orloff: The effect of adrenergic agents on the response of the toad urinary bladder to vasopressin. J. clin. Invest. 46, 1066 (1967).

    Google Scholar 

  47. ——, and J. Orloff: The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad. J. biol. Chem. 240, 4524 (1965).

    Google Scholar 

  48. Handler, L. S., and J. Orloff: Activation of phosphorylase in toad bladder and mammalian kidney by antidiuretic hormone. Amer. J. Physiol. 205, 298 (1963).

    Google Scholar 

  49. Hardman, J. G., J. W. Davis, and E. W. Sutherland: Measurement of guanosine 3′,5′-monophosphate and other cyclic nucleotides. J. biol. Chem. 241, 4812 (1966).

    Google Scholar 

  50. ——, and E. W. Sutherland: A cyclic 3′,5′-nucleotide phosphodiesterase from heart with specificity for uridine 3′,5′-phosphate. J. biol. Chem. 240, PC 3704 (1965).

    Google Scholar 

  51. Heimsoth, V., F. Hartmann u. J. Deiwick: In: Hochdruckforschung, hrsg. von I. Heilmeyer u. H. J. Holtmeier. Stuttgart: G. Thieme 1965.

    Google Scholar 

  52. Henning, H. V., I. Seiffert u. W. Seubert: Cortisol induzierter Anstieg der Pyruvatcarboxylaseaktivität in der Rattenleber. Biochim. biophys. Acta 77, 345 (1963).

    Google Scholar 

  53. ——, and W. Seubert: On the mechanism of gluconeogenesis and its regulation. III. The gluconeogenic capacity and the activities of pyruvat carboxylase and PEP-carboxylase of rat kidney and rat liver after cortisol treatment and starvation. Biochem. Z. 344, 274 (1966).

    Google Scholar 

  54. Hoffmann, M., K. Munske, G. Schultz, and G. Senft: Effects of hydration and dehydration on cyclic adenosine 3′,5′-monophosphate concentration in the rat kidney. Pflügers Arch. ges. Physiol. (in press) (1968).

  55. Hohenwallner, W.: Der Einfluß von Kortikoiden auf die Aktivität der Glucose-6-phosphat-Dehydrogenase in Erythrocyten. Clin. chim. Acta 16, 353 (1967).

    Google Scholar 

  56. Huijing, F., and J. Larner: On the effect of adenosine 3′,5′-cyclophosphate on the kinase of UDPG: α-1,4-glucan α-4-glucosyl transferase. Biochem. biophys. Res. Commun. 23, 259 (1966).

    Google Scholar 

  57. —— —— On the mechanisn of action of adenosine 3′,5′-cyclophosphate. Proc. nat. Acad. Sci. (Wash.) 56, 647 (1966).

    Google Scholar 

  58. Jeanrenaud, B., and A. E. Renold: Studies on rat adipose tissue in vitro. VII. Effects of adrenal cortical hormones. J. biol. Chem. 235, 2217 (1960).

    Google Scholar 

  59. Johnson, B. C., and H. F. Sassoon: Studies on the induction of liver glucose-6-phosphate dehydrogenase. In: Advances in Enzyme Regulation, Vol. 5, ed. by G. Weber. Oxford: Pergamon Press 1967.

    Google Scholar 

  60. Jungas, R. L.: Role of cyclic 3′,5′-AMP in the response of adipose tissue to insulin. Proc. nat. Acad. Sci. (Wash.) 56, 757 (1966).

    Google Scholar 

  61. ——, and E. G. Ball: Studies on the metabolism of adipose tissue. XII. The effect of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry 2, 383 (1963).

    Google Scholar 

  62. Kaess, H., G. Senft, W. Losert, R. Sitt u. G. Schultz: Mechanismus der gesteigerten glykogenolytischen Wirkung des Diazoxids im Kaliummangel. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 395 (1966).

    Google Scholar 

  63. Kemp, R. G., and E. G. Krebs: Binding of metabolites by phosphofructokinase. Biochemistry 6, 423 (1967).

    Google Scholar 

  64. Kinne, R., u. R. Kirsten: Enzymaktivitäten in der Niere normaler und adrenalektomierter Ratten vor und nach Aldosterongabe. Pflügers Arch. ges. Physiol. 294, R31 (1967).

  65. Klingenberg, M., and D. Pette: Proportions of mitochondrial enzymes and pyridine nucleotides. Biochem. biophys. Res. Commun. 7, 430 (1962).

    Google Scholar 

  66. Königstein, R. P.: Diabetes mellitus und Saluretica. Stuttgart: G. Thieme 1967.

    Google Scholar 

  67. Krebs, E. G., D. J. Graves, and E. H. Fischer: Factors affecting the activity of muscle phosphorylase-b-kinase. J. biol. Chem. 234, 2867 (1959).

    Google Scholar 

  68. ——, and W. D. Riley: Activation of skeletal muscle phosphorylase. Pharmacol. Rev. 18, 163 (1966).

    Google Scholar 

  69. ——, and E. H. Fischer: Purification and properties of rabbit muscle phosphorylase-b-kinase. Biochemistry 3, 1022 (1964).

    Google Scholar 

  70. Lardy, H. A.: Gluconeogenesis: Pathways and hormonal regulation. Harvey Lect. 60, 261 (1965).

    Google Scholar 

  71. ——, and P. D. Ray: Metabolic and hormonal regulation of phosphopyruvate synthesis. In: Advances in Enzyme Regulation, Vol. 2, ed. by G. Weber. Oxford: Pergamon Press 1962.

    Google Scholar 

  72. Lauson, H. D.: Metabolism of antidiuretic hormones. Amer. J. Med. 42, 713 (1967).

    Google Scholar 

  73. Liddle, G. W.: Specific and non-specific inhibition of mineralocorticoid activity. Clin. exp. Metabolism 10, 1021 (1961).

    Google Scholar 

  74. Losert, W., C. Senft u. G. Senft: Extrarenale Wirkungen des Aldosterons und der Spirolactone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 450 (1964).

    Google Scholar 

  75. —— u. H. Kaess: Die Beteiligung des Insulins an der Diazoxid-Hyperglykämie. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 388 (1966).

    Google Scholar 

  76. —— u. G. Schultz: Untersuchungen zum Wirkungsmechanismus des Aldosterons. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 309 (1967).

    Google Scholar 

  77. -- -- G. Senft, and A. Zesch: Biochemical studies on mechanisms of action of compounds influencing tubular sodium transport: I. Aldosterone, amiloride, triamterene. 5. Symposium der Gesellschaft für Nephrologie, Lausanne, 21.–23. September 1967 (in press).

  78. Loubatières, A., M. M. Mariani, and R. Alric: Demonstration of the actions of diazoxide on insulin secretion, medullo-adrenal secretion and the liberation of catecholamines. Abstract, Conference on “Diazoxide and the Treatment of Hypoglycemia”. The New York Academy of Sciences, Section of Biological and Medical Sciences and Division of Biochemistry. January, 5–6 (1967) (in press).

  79. Mähr, G., u. K. Rommel: Saluretica und Kohlenhydratstoffwechsel. Med. Welt (N.F.) 17, 19 (1966).

    Google Scholar 

  80. Malaisse, W., F. Malaisse-Lagae, E. F. McCraw, and P. H. Wright: Insulin secretion in vitro by pancreatic tissue from normal, adrenalectomized, and cortisol treated rats. Proc. Soc. exp. Biol. (N.Y.) 124, 924 (1967).

    Google Scholar 

  81. Mandel, L. R., and F. A. Kuehl Jr.: Lipolytic action of l-triiodothyronine-a cyclic 3′,5′-AMP phosphodiesterase inhibitor. Fed. Proc. 26, 810 (1967).

    Google Scholar 

  82. —— —— Lipolytic action of 3,3′5-triiodo-l-thyronine, a cyclic AMP phosphodiesterase inhibitor. Biochem. biophys. Res. Commun. 28, 13 (1967).

    Google Scholar 

  83. Mendicino, J., C. Beaudreau, and R. N. Bhattacharyya: Reversible inactivation of d-fructose-1,6-diphosphatase by adenosine triphosphate and cyclic 3′,5′-AMP. Arch. Biochem. 116, 436 (1966).

    Google Scholar 

  84. Meng, H. C., and R. J. Ho: Quantitative relationship of some factors affecting fatty acid mobilization and the role of adenosine 3′,5′-monophosphate in the activation of epinephrine-sensitive lipase in adipose tissue. Progr. biochem. Pharmacol. 3, 207 (1967).

    Google Scholar 

  85. Merleverde, W., and G. A. Riley: The activation and inactivation of phosphorylase phosphatase from bovine adrenal cortex. J. biol. Chem. 241, 3517 (1966).

    Google Scholar 

  86. Milner, R. D. G., and C. N. Hales: The sodium pump and insulin secretion. Biochim. biophys. Acta (Amst.) 135, 375 (1967).

    Google Scholar 

  87. Molina, G., A. Farah, and R. Kruse: Effect of vasopressin and dehydration on protein bound sulfhydryl and disulfide groups in renal cells. Amer. J. Physiol. 204, 541 (1963).

    Google Scholar 

  88. Munske, K., G. Schultz, M. Hoffmann, and G. Senft: The influence of hydrochlorothiazide and other sulfamoyl diuretics on the activity of 3′,5′-AMP phosphodiesterase in rat kidney. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. (in press) (1968).

  89. Murad, F., Y.-M. Chi, T. W. Rall, and E. W. Sutherland: Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3′,5′-phosphate by preparations from cardiac muscle and liver. J. biol. Chem. 237, 1233 (1962).

    Google Scholar 

  90. Nagano, M., K. Klütsch, A. Heidland u. H. Hochrein: Enzymaktivitäten in der Niere bei akuter experimenteller Hypokaliämie. Klin. Wschr. 41, 605 (1963).

    Google Scholar 

  91. —— —— —— —— Enzymaktivitäten in der Leber bei akuter experimenteller Hypokaliämie. Z. ges. exp. Med. 137, 181 (1963).

    Google Scholar 

  92. Øye, I., and E. W. Sutherland: The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim. biophys. Acta (Amst.) 127, 347 (1966).

    Google Scholar 

  93. Orloff, J., and J. S. Handler: The similarity of effects of vasopressin, 3′,5′-AMP (cyclic AMP) and theophylline on the toad bladder. J. clin. Invest. 41, 702 (1962).

    Google Scholar 

  94. —— —— The cellular mode of action of antidiuretic hormone. Amer. J. Med. 36, 686 (1964).

    Google Scholar 

  95. —— —— The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone. Amer. J. Med. 42, 757 (1967).

    Google Scholar 

  96. Parmeggiant, A., J. H. Luft, D. S. Love, and E. G. Krebs: Crystallization and properties of rabbit skeletal muscle phosphofructokinase. J. biol. Chem. 241, 4625 (1966).

    Google Scholar 

  97. Pfeiffer, C. J., and P. J. Muller: The influence of glucocorticoids on intestinal mucosal hexosemonophosphate shunt enzymes in the rat. Arch. int. Pharmacodyn. 166, 258 (1967).

    Google Scholar 

  98. Porte, D.: A receptor mechanism for the inhibition of insulin release by epinephrine. J. clin. Invest. 46, 86 (1967a).

    Google Scholar 

  99. —— Beta adrenergic stimulation of insulin release in man. Diabetes 16, 150 (1967b).

    Google Scholar 

  100. Price, T. D., D. F. Ashman, and M. M. Melicow: Organophosphates of urine, including adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate. Biochim. biophys. Acta (Amst.) 138, 452 (1967).

    Google Scholar 

  101. Rabinowitz, M., L. de Salle, J. Meisler, and L. Lorand: Distribution of adenyl cyclase activity in rabbit skeletal muscle fractions. Biochim. biophys. Acta (Amst.) 97, 29 (1965).

    Google Scholar 

  102. Rall, T. W., and E. W. Sutherland: Enzymes concerned with interconversion of liver phosphorylases. In: Methodes in Enzymology, Vol. 5, p. 377, ed. by S. P. Colowick and N. O. Kaplan. New York, London: Academic Press 1962.

    Google Scholar 

  103. Ray, P. D., D. O. Foster, and H. A. Lardy: Mode of action of glucocorticoids. I. Stimulation of gluconeogenesis independent of synthesis de novo of enzymes. J. biol. Chem. 239, 3396 (1964).

    Google Scholar 

  104. Rizack, M. A.: Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′,5′-phosphate. J. biol. Chem. 239, 392 (1964).

    Google Scholar 

  105. Robison, G. A., R. W. Butcher, and E. W. Sutherland: Adenyl cyclase as an adrenergic receptor. Ann. N.Y. Acad. Sci. 139, 703 (1967).

    Google Scholar 

  106. Rodbel, M.: The metabolism of isolated fat cells. In: Handbook of Physiology section 5: Adipose Tissue, ed. by A. E. Renold and G. F. Cahill Jr.. American Physiological Society, Washington, D.C. 1965.

    Google Scholar 

  107. Rodbel, M., and A. B. Jones: Metabolis of isolated fat cells. III. The similar inhibitory action of phospholipase c (chlostridium perfringens α-toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J. biol. Chem. 241, 140 (1966).

    Google Scholar 

  108. Sagild, U., and V. Andersen: Further studies on glucose metabolism in experimental potassium depletion. Acta med. scand. 175, 681 (1964).

    Google Scholar 

  109. —— ——, and P. B. Andreasen: Glucose tolerance and insulin responsiveness in experimental potassium depletion. Acta med. scand. 169, 243 (1961).

    Google Scholar 

  110. Schultz, G., K. Munske, M. Hoffmann, and G. Senft: On the permissive action of glucocorticoids in the regulation of cyclic 3′,5′-AMP phosphodiesterase activity by insulin. European J. Biochem. (prepared) (1968).

  111. -- -- G. Senft, and M. Hoffmann: Influence of insulin on cyclic 3′,5′-AMP phosphodiesterase activity in liver, skeletal muscle, adipose tissue, and kidney. European J. Biochem. (prepared) (1968).

  112. —— u. K. Munske: Der Einfluß von Insulin auf die enzymatische Regulation der Glycogenolyse. Naturwissenschaften 53, 529 (1966).

    Google Scholar 

  113. —— —— —— Die Abhängigkeit glykogenauf- und -abbauender enzymatischer Regulationen von der Insulininkretion. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 62 (1967).

    Google Scholar 

  114. Schwartz, I. L., H. Rasmussen, M. A. Schoessler, L. Silver, and C. T. O. Fong: Relation of chemical attachment to physiological action of vasopressin. Proc. nat. Acad. Sci. (Wash.) 46, 1288 (1966).

    Google Scholar 

  115. , and R. Walter: Factors influencing the reactivity of the toad bladder to the hydro-osmotic action of vasopressin. Amer. J. Med. 42, 769 (1967).

    Google Scholar 

  116. Seltzer, H. S., and E. W. Allen: Inhibition of insulin secretion in “diazoxide-diabetes”. Diabetes 14, 439 (1965).

    Google Scholar 

  117. Senft, G.: Über den Mechanismus und die Lokalisation der renalen Wirkung von 2,-4,-7-Triamino-6-phenylpteridin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 352 (1962).

    Google Scholar 

  118. —— Beeinflussung hormonaler und enzymatischer Regulationen im Kohlenhydratstoffwechsel bei Anwendung von Benzothiadiazinen. Internist 7, 426 (1966).

    Google Scholar 

  119. —— Störungen im Kohlenhydratstoffwechsel nach Gabe diuretisch wirksamer Substanzen. Ther. Umsch. 24, 301 (1967).

    Google Scholar 

  120. —— u. H. K. Bartelheimer: Ursachen der Störung im Kohlenhydratstoffwechsel unter dem Einfluß sulfonamidierter Diuretica. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 369 (1966).

    Google Scholar 

  121. -- R. Sitt, W. Losert u. M. Hoffmann: Hemmung der Insulininkretion durch α-Receptoren stimulierende Substanzen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. (prepared) (1968).

  122. Share, L.: Vascular volume and blood level of antidiuretic hormone. Amer. J. Physiol. 202, 791 (1962).

    Google Scholar 

  123. Sharp, G. W. G., C. H. Coggins, N. S. Lichtenstein, and A. Leaf: Evidence for a mucosal effect of aldosterone on sodium transport in the toad bladder. J. clin. Invest. 45, 1640 (1966).

    Google Scholar 

  124. ——, and A. Leaf: Mode of hormone action: Studies on the mode of action of aldosterone. In: Recent Progress Hormone Res. 22, 431 (1966), edited by G. Pincus. New York, London: Academic Press 1966.

    Google Scholar 

  125. Sie, H.-G., A. Hablanian, and W. H. Fishman: Divergent effects of actinomycin D on cortisol and on glucose stimulation of glycogenesis in mouse liver. Biochem. J. 102, 103 (1967).

    Google Scholar 

  126. Sitt, R., G. Senft, W. Losert u. H. K. Bartelheimer: Die Auswirkung einer negativen Kaliumbilanz auf hormonale und enzymatische Regulationen des Kohlenhydratstoffwechsels. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 66 (1967).

    Google Scholar 

  127. —— —— —— —— Zum Mechanismus der gesteigerten Gluconeogenese nach renalen Kaliumverlusten. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 337 (1967).

    Google Scholar 

  128. --, and W. Losert: Unpublished results (1968).

  129. Steiner, D. F., and J. King: Induced synthesis of hepatic uridine diphosphate glucose-glycogen glucosyltransferase after administration of insulin to alloxandiabetic rats. J. biol. Chem. 239, 1292 (1964).

    Google Scholar 

  130. Stock, K., u. E. Westermann: Hemmung der Lipolyse durch α- und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 334 (1966).

    Google Scholar 

  131. Suda, M.: A view of the comparison of the regulation of enzymes in mammalian and microbial systems. In: Advances in Enzyme Regulation, Vol. 5, ed. by G. Weber. Oxford: Pergamon Press 1967.

    Google Scholar 

  132. Sussman, K. E., and G. D. Vaughan: Insulin release after ACTH, glucagon and adenosine-3′,5′-phosphate (cyclic AMP) in the perfused isolated rat pancreas. Diabetes 16, 449 (1967).

    Google Scholar 

  133. Sutherland, E. W., and T. W. Rall: The relation of adenosine-3′,5′-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12, 265 (1960).

    Google Scholar 

  134. —— —— and T. Menon: Adenyl cyclase. I. Distribution, preparation and properties. J. biol. Chem. 237, 1220 (1962).

    Google Scholar 

  135. ——, and G. A. Robison: The role of cyclic-3′,5′-AMP in responses to catecholamines and other hormones. Pharmacol. Rev. 18, 145 (1966).

    Google Scholar 

  136. Turtle, J. R., and D. M. Kipnis: An adrenergic receptor mechanism for the control of cyclic 3′,5′ adenosine monophosphate synthesis in tissues. Biochem. biophys. Res. Commun. 28, 797 (1967).

    Google Scholar 

  137. ——, and D. M. Kipnis: Stimulation of insulin secretion by theophylline. Nature (Lond.) 213, 727 (1967).

    Google Scholar 

  138. Ullrich, K. J., u. K. Hierholzer: Physiologie der Niere. In H. Sarre: Nierenkrankheiten. Stuttgart: G. Thieme 1967.

    Google Scholar 

  139. —— u. G. Fuchs: Wasserpermeabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol. 280, 99 (1964).

    Google Scholar 

  140. Vaughan, M., J. E. Berger, and D. Steinberg: Hormone-sensitive lipase and monoglyceride lipase acticities in adipose tissue. J. biol. Chem. 239, 401 (1964).

    Google Scholar 

  141. Verney, E. B.: Water diuresis. Irish J. med. Sci. 345, 377 (1954).

    Google Scholar 

  142. Weber, G., and H. J. H. Convery: Insulin: inducer of glucose-6-phosphate dehydrogenase. Life Sci. 5, 1139 (1966).

    Google Scholar 

  143. ——, and N. B. Stamm: Regulatory pattern of liver carbohydrate metabolizing enzymes: insulin as inducer of key glycolytic enzymes. Enzym. biol. clin. 7, 11 (1966).

    Google Scholar 

  144. ——, and S. K. Srivastava: Action of glucocorticoid as inducer and insulin as suppressor of biosynthesis of hepatic gluconeogenic enzymes. In: Advances in Enzyme Regulation, Vol. 3, p. 369, ed. by G. Weber. Oxford: Pergamon Press 1965.

    Google Scholar 

  145. —— ——, and M. A. Mentendiek: Regulation of enzymes involved in gluconeogenesis. In: Advances in Enzyme Regulation, Vol. 2, p. 1, ed. by G. Weber. Oxford: Pergamon Press 1964.

    Google Scholar 

  146. —— —— ——, and E. A. Fisher: Synchronous behavior pattern of key glycolytic enzymes: glucokinase, phosphofructokinase, and pyruvate kinase. In: Advances in Enzyme Regulation, Vol. 4, p. 59, ed. by G. Weber. Oxford: Pergamon Press 1966.

    Google Scholar 

  147. —— —— —— and S. K. Srivastava: Hormonal induction and suppression of liver enzyme biosynthesis. Fed. Proc. 24, 745 (1965).

    Google Scholar 

  148. ——, and E. A. Fisher: Insulin: inducer of pyruvate kinase. Science 149, 65 (1965).

    Google Scholar 

  149. Weinges, K. F., u. G. Löffler: Der Einfluß von Cortisol auf den Insulineffekt am Fettgewebe in vitro. Klin. Wschr. 42, 502 (1964).

    Google Scholar 

  150. Weiss, B., J. I. Davies, and B. B. Brodie: Evidence for a role of adenosine 3′,5′-monophosphate in adipose tissue lipolysis. Biochem. Pharmacol. 15, 1553 (1966).

    Google Scholar 

  151. Wiederholt, M.: Mikropunktionsuntersuchungen am proximalen und distalen Konvolut der Rattenniere über den Einfluß von Actinomycin D auf den mineralocorticoidabhängigen Na-Transport. Pflügers Arch. ges. Physiol. 292, 334 (1966).

    Google Scholar 

  152. Wulf, H. de, and H. G. Hers: The stimulation of glycogen synthesis and of glycogen synthetase in the liver by glucocorticoids. European J. Biochem. 2, 57 (1967).

    Google Scholar 

  153. Zesch, A.: Einfluß natriumeliminierender Substanzen auf den Gehalt an reduzierten Glutathion in der Rattenniere. Thesis, Med. Fac. Free University Berlin, 1968.

  154. -- G. Senft, and W. Losert: Biochemical studies on mechanisms of action of compounds influencing tubular sodium transport: II Furosemide, 6-aminonicotianamide. 5. Symposium der Gesellschaft für Nephrologie, Lausanne, 21.–23. September 1967 (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

For reprints: Dr. G. Schultz und Dr. W. Losert Pharmakologisches Institut der Freien Universität Berlin 1000 Berlin 33, Thielallee 69-73

Deceased 31st October 1967.

We thank the Deutsche Forschungsgemeinschaft for supporting our studies reported in this paper. These studies were performed in the Department of Pharmacology, Free University, Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senft, G. Hormonal control of carbohydrate and lipid metabolism and drug induced alterations. Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 259, 117–148 (1968). https://doi.org/10.1007/BF00537742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537742

Keywords

Navigation