Biophysics of structure and mechanism

, Volume 4, Issue 4, pp 327–335 | Cite as

Stacking interaction of nucleobases: NMR investigations

III. Molecular aspects of the solvent dependence
  • H. Sapper
  • W. Lohmann


The stacking interaction between nucleic acid bases has been investigated by the determination of the self-association of 6-methylpurine in various mixtures of water and nonaqueous solvents in order to elucidate the solvent effect. The parameters of stacking association as well as of local solvent-solute interactions have been measured by means of NMR technique. The influences of local hydration and of solvent-solvent interactions on the stacking ability are discussed.

Key words

Stacking Solvent-mixtures 6-methylpurine Self-association 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deranleau, D. A.: Theory of the measurement of weak molecular complexes. II. Consequences of multiple equilibria. J. Amer. chem. Soc. 91, 4050–4054 (1969)Google Scholar
  2. Dimicoli, J. L., Hélène, C.: Complex formation between purine and indole derivatives in aqueous solutions. Proton magnetic resonance studies. J. Amer. chem. Soc. 95, 1036–1044 (1973)Google Scholar
  3. Gaarz, U., Lüdemann, H. D.: Pressure dependence of the self-association of 9-methylpurine in aqueous solution. Ber. Bunsenges. 80, 607–614 (1976)Google Scholar
  4. Helmkamp, G. K., Kondo, N. S.: Purine stacking: effects of alkyl substituents. Biochim. biophys. Acta (Amst.) 157, 242–257 (1968)Google Scholar
  5. Herskovits, T. T., Harrington, J. P.: Solution studies of the nucleic acid bases and related model compounds. Solubility in aqueous alcohol and glycol solutions. Biochemistry 11, 4800–4811 (1972)Google Scholar
  6. Kelly, G. R., Kurucsev, T.: Interactions between purine derivatives: electronic spectral studies. II. Exciton interactions in the dimer of 6-methylpurine in aqueous solution. Biopolymers 13, 769–778 (1974)Google Scholar
  7. Kreishman, G. P., Foss, D. A., Inoue, K., Leifer, L.: The salt-induced destacking of purine in aqueous NaCl systems and its implications on life at elevated temperatures. Biochemistry 15, 5431–5435 (1976)Google Scholar
  8. Lawaczeck, R., Wagner, K. G.: Stacking specificity and polarization. Comparative synopsis of affinity data. Biopolymers 13, 2003–2014 (1974)Google Scholar
  9. Lowe, M. J., Schellman, J. A.: Solvent effects on dinucleotide conformation. J. molec. Biol. 65, 91–109 (1972)Google Scholar
  10. Marenchic, M. G., Sturtevant, J. M.: Calorimetric investigation of the association of various purine bases in aqueous media. J. physic. Chem. 77, 544–548 (1973)Google Scholar
  11. McGhee, J. D., von Hippel, P. H.: Formaldehyde as a probe of DNA structure. 4. Mechanism of the initial reaction of formaldehyde with DNA. Biochemistry 16, 3276–3293 (1977)Google Scholar
  12. Plesiewicz, E., Stephien, E., Bolewska, K., Wierzchowski, K. L.: Osmometric studies on self-association of pyrimidines in aqueous solutions: evidence for involvement of hydrophobic interactions. Biophys. Chem. 4, 131–141 (1976)Google Scholar
  13. Pörschke, D., Eggers, F.: Thermodynamics and kinetics of base-stacking interactions. Europ. J. Biochem. 26, 490–498 (1972)Google Scholar
  14. Port, G. N. J., Pullman, A.: Quantum-mechanical studies of environmental effects on biomolecules. II. Hydration sites in purines and pyrimidines. FEBS-Lett. 31, 70–74 (1973)Google Scholar
  15. Sapper, H.: PMR-Untersuchungen zur molekularen Wechselwirkung serotoninÄhnlicher Halluzinogene mit Purinderivaten. Ph. D. Thesis, Technische UniversitÄt München 1975Google Scholar
  16. Sapper, H., Lohmann, W.: Self-association and binding sites of some psychotomimetic tryptamine derivatives and related compounds: nuclear magnetic resonance investigations. Molec. Pharmacol. 12, 605–611 (1976)Google Scholar
  17. Schimmack, W., Sapper, H., Lohmann, W.: Stacking interactions of nucleobases: NMR-investigations. I. Self-association of N6,N9-dimethyladenine and N6-dimethyl-N9-ethyladenine. Biophys. Struct. Mechanism 1, 113–120 (1975)Google Scholar
  18. Schimmack, W., Sapper, H., Lohmann, W.: Stacking interactions of nucleobases: NMR-investigations. II. Self-association of purine- and pyrimidine-derivatives. Biophys. Struct. Mechanism 1, 311–318 (1975)Google Scholar
  19. Scruggs, R. L., Achter, E. G.: The thermodynamic effects of exposing nucleic acid bases to water: solubility measurements in water and organic solvents. Biopolymers 11, 1961–1972 (1972)Google Scholar
  20. Sinanoglu, O., Abdulnur, S., Kestner, N. R.: Solvent effects on Van der Waals dispersion attractions particularly in DNA. In: Electronic aspects of biochemistry (ed. B. Pullman), pp. 301–311. New York: Academic Press 1964Google Scholar
  21. Stoesser, P. R., Gill, S. J.: Calorimetric study of self-association of 6-methylpurine in water. J. physic. Chem. 71, 564–567 (1967)Google Scholar
  22. Ts'o, P. O. P., Kondo, N. S., Robins, R. K., Broom, A. D.: Interaction and association of bases and nucleosides in aqueous solutions. VI. Properties of 7-methylinosine as related to the nature of the stacking interaction. J. Amer. chem. Soc. 91, 5625–5631 (1969)Google Scholar
  23. Ts'o, P. O. P.: Basic principles in nucleic acid chemistry, vol. I, pp. 537–562. New York: Academic Press 1974Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. Sapper
    • 1
  • W. Lohmann
    • 1
  1. 1.Institut für Biophysik der UniversitÄtGie\enFederal Republic of Germany

Personalised recommendations