Skip to main content
Log in

Theoretical calculation of electric dipole moments for conjugated systems

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A detailed survey has been made of the potentialities of the VESCF molecular orbital procedure for computing electric dipole moments of conjugated molecules. Forty-one molecules, ranging from non-alternant hydrocarbons to a wide variety of heterocycles and benzene derivatives have been studied. The agreement between theory and experiment is always within 0.4 D and notably better than has been achieved by any alternative theoretical procedure so far. Some assessment is made of the relative merits of alternative techniques for dealing with neutral-atom penetration integrals and with two-electron coulomb integrals. Comments are made on the contributions of σ-bond polarities and of hydrogen atom hybridization moments.

The possibility that the present procedure for treating heterocyclic oxygen is less satisfactory than for nitrogen is indicated, the molecules showing greatest deviations from experiment being oxygen heterocycles.

The present study points up the fact that for some of the key molecules studied the experimental values are of uncertain reliability or, occasionally, not yet available.

Zusammenfassung

Im Rahmen der VESCF-Methode sind die Dipolmomente von 41 Molekülen mit konjugierten Systemen berechnet worden, beginnend mit nicht alternierenden Kohlenwasserstoffen bis zu einer Reihe von Heterocyclen und Benzolderivaten. Theorie und Experiment stimmen in den meisten Fällen bis auf 0.4 D — und damit wesentlich besser als bei den meisten bisherigen Verfahren — überein. Einige Bemerkungen in bezug auf die Vorteile einzelner Methoden, Durchdringungs- und Coulombintegrale zu behandeln, auf den Beitrag der σ-Elektronen und der Wasserstoffhybridisierungsmomente werden zur Ergänzung gemacht.

Die angewandte Methode scheint zur Behandlung von Heterosauerstoff weniger geeignet als für Stickstoff zu sein, da Moleküle mit Sauerstoff die größten Abweichungen vom Experiment zeigen. Andererseits zeigt sich, daß die experimentellen Werte für einige wichtige Moleküle zweifelhaft sind.

Résumé

Etude détaillée des possibilités de la méthode des orbitales moléculaires SCF à électronégativité variable pour le calcul des moments dipolaires électriques des molécules conjuguées. L'étude a porté sur quarante et une molécules s'étendant d'hydrocarbures non alternants jusqu'à une large classe de dérivés benzéniques et d'hétérocycles. L'accord entre la théorie et l'expérience est presque toujours à moins de 0,4 D, étant notablement meilleur que celui obtenu jusqu'alors par une autre technique. On établit en partie les mérites relatifs des différentes techniques d'utilisation des intégrales de pénétration et des intégrales coulombiennes. On fait des commentaires sur les contributions des polarités des liaisons σ et des moments d'hybridation de l'atome d'hydrogène.

On mentionne la possibilité pour le présent procédé de traiter l'oxygène hétérocyclique d'une manière moins satisfaisante que l'azote, les heterocycles oxygénés étant les molécules présentant le plus grand désaccord avec l'expérience.

Cette étude souligne le fait que pour certaines molécules clés les données expérimentales sont peu certaines sinon inexistantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Albert, A.: Private communication.

  2. Bader, R. F. W.: J. Am. chem. Soc. 86, 5070 (1964).

    Google Scholar 

  3. —, and G. A. Jones: J. chem. Physics 38, 2791 (1963).

    Google Scholar 

  4. —: Canadian J. Chem. 41, 586, 2251 (1963).

    Google Scholar 

  5. Bak, B., D. Christensen, L. Hansen, and J. Rastrup-Andersen: J. chem. Physics 24, 720 (1956).

    Google Scholar 

  6. —, L. Hansen, and J. Rastrup-Andersen: Disc. Faraday Soc. 19, 30 (1955).

    Google Scholar 

  7. Berthier, G.: J. Chim. physique 50, 344 (1953).

    Google Scholar 

  8. Béry, J.-C.: Theoret. chim. Acta (Berl.) 3, 363 (1965).

    Google Scholar 

  9. Bloor, J. E.: Canadian J. Chem. 43, 3026 (1965).

    Google Scholar 

  10. —, P. N. Daykin, and P. Boltwood: Canadian J. Chem. 42, 121 (1964).

    Google Scholar 

  11. Brown, R. D.: Trans. Faraday Soc. 44, 984 (1948).

    Google Scholar 

  12. -, and F. R. Burden: Unpublished results.

  13. -, and D. B. Vigor: Unpublished results.

  14. —, and B. A. W. Coller: Australian J. Chem. 12, 152 (1959).

    Google Scholar 

  15. — —, and M. L. Heffernan: Tetrahedron 18, 343 (1962).

    Google Scholar 

  16. —, and M. L. Heffernan: Trans. Faraday Soc. 54, 757 (1958).

    Google Scholar 

  17. —: Australian J. Chem. 10, 211, 493 (1957).

    Google Scholar 

  18. —: Australian J. Chem. 12, 319 (1959).

    Google Scholar 

  19. —: Australian J. Chem. 12, 554 (1959).

    Google Scholar 

  20. —: Australian J. Chem. 13, 38 (1960).

    Google Scholar 

  21. —: Australian J. Chem. 12, 543 (1959).

    Google Scholar 

  22. —: Australian J. Chem. 13, 49 (1960).

    Google Scholar 

  23. —, and A. Penfold: Trans. Faraday Soc. 53, 397 (1957).

    Google Scholar 

  24. - Unpublished results.

  25. Coulson, C. A.: Rev. modern Physics 32, 170 (1960).

    Google Scholar 

  26. Craig, D. P.: Ann. Reports Chem. Soc. (Lond.) 55, 169 (1958).

    Google Scholar 

  27. Dahl, J. P., and A. E. Hansen: Theoret. chim. Acta 1, 199 (1963).

    Google Scholar 

  28. Del Re, G.: Atti Accad. Lincei 22, 491 (1957).

    Google Scholar 

  29. —: Tetrahedron 10, 81 (1960).

    Google Scholar 

  30. Dewar, M. J. S., and D. S. Urch: J. chem. Soc. (Lond.) 1957, 345.

  31. - J. Chem. Soc. 1958, 3079.

  32. Dickinson, B. N.: J. chem. Physics 1, 317 (1933).

    Google Scholar 

  33. Duncan, A. B. F.: J. chem. Physics 27, 423 (1957) see Ref. 3.

    Google Scholar 

  34. Ellison, F. O., and H. Shull: J. chem. Physics 21, 1420 (1953).

    Google Scholar 

  35. Erlandson, G., and H. Selén: Arkiv fur Fysik 14, 61 (1958).

    Google Scholar 

  36. Fischer-Hjalmars, I.: Arkiv fur Fysik 21, 123 (1962).

    Google Scholar 

  37. Foster, T. M., and S. F. Boys: Rev. modern Physics 32, 303 (1960).

    Google Scholar 

  38. Goodfriend, P. L., F. W. Birss, and A. B. F. Duncan: Rev. modern Physics 32, 307 (1960).

    Google Scholar 

  39. Goodwin, T. H.: J. chem. Soc. (London) 1955, 4451.

  40. Hameka, H. F., and A. M. Liquori: Mol. Physics 1, 9 (1958).

    Google Scholar 

  41. Hamano, H., and H. F. Hameka: Tetrahedron 18, 985 (1962).

    Google Scholar 

  42. Harrison, M. C.: J. chem. Physics 41, 499 (1964).

    Google Scholar 

  43. Hurley, A. C.: Rev. modern Physics 32, 408 (1960).

    Google Scholar 

  44. Iguchi, K.: J. chem. Physics 23, 1983 (1955).

    Google Scholar 

  45. —: J. chem. Physics 25, 217 (1956).

    Google Scholar 

  46. Julg, A.: J. Chim. physique 52, 50 (1955).

    Google Scholar 

  47. —: J. Chim. physique 59, 759 (1962).

    Google Scholar 

  48. —, and M. Bonnet: J. Chim. physique 57, 434 (1960).

    Google Scholar 

  49. —, and P. Carles: J. Chim. physique 59, 852 (1962).

    Google Scholar 

  50. —, and P. Francois: J. Chim. physique 57, 490 (1960).

    Google Scholar 

  51. —: J. Chim. physique 59, 339 (1962).

    Google Scholar 

  52. Kaplan, H.: J. chem. Physics 26, 1704 (1957).

    Google Scholar 

  53. Karo, A. M., and L. C. Allen: J. chem. Physics 31, 968 (1959).

    Google Scholar 

  54. Ransil, B. J.: Rev. modern Physics 32, 242 (1960).

    Google Scholar 

  55. Kern, C. W., and M. Karplus: J. chem. Physics 40, 1374 (1964).

    Google Scholar 

  56. Mukherji, A., and M. Karplus: J. chem. Physics 38, 44 (1963).

    Google Scholar 

  57. Kirchoff, W. H.: Private communication.

  58. Kon, H.: Bull. chem. Soc. Japan 27, 566 (1954).

    Google Scholar 

  59. —: Bull. chem. Soc. Japan 28, 275 (1955).

    Google Scholar 

  60. Kwei, G. H., and R. F. Curl: J. chem. Physics 32, 1592 (1962).

    Google Scholar 

  61. Lefebvre-Brion, H., C. Moser, R. K. Nesbet, and M. Yamazaki: J. chem. Physics 38, 2311 (1963).

    Google Scholar 

  62. Le Fevre, R. J. W.: Dipole moments, Methuen: 3rd Edition, Chap. IV (1953).

  63. Lister, D. G., and J. K. Tyler: Chemical Communications 1966, 152.

  64. Mackrodt, W. C., A. Wardley, P. A. Curmuck, N. L. Owen, and J. Sheridan: In course of publication.

  65. Mataga, N., u. K. Nishimoto: Z. physik. Chem. N.F. 13, 140 (1957).

    Google Scholar 

  66. Nishimoto, K., u. N. Mataga: Z. physik. Chem. N.F. 12, 335 (1957).

    Google Scholar 

  67. McClellan, A. L.: Tables of experimental dipole moments. San Francisco: W. H. Freeman and Co. 1963.

  68. Moccia, K.: J. chem. Physics 40, 2164, 2176, 2186 (1964).

    Google Scholar 

  69. Moskowitz, J. M., and M. C. Harrison: J. chem. Physics 43, 3550 (1965).

    Google Scholar 

  70. Nesbet, R. K.: J. chem. Physics 36, 1518 (1962).

    Google Scholar 

  71. —: J. chem. Physics 40, 3619 (1964).

    Google Scholar 

  72. Orgel, L. E., T. L. Cottrell, W. Dick, and L. E. Sutton: Trans. Faraday Soc. 47, 113 (1951).

    Google Scholar 

  73. Paoloni, L.: Nuovo Cimento 4, 410 (1956).

    Google Scholar 

  74. Pariser, R.: J. chem. Physics 21, 568 (1953).

    Google Scholar 

  75. —: J. chem. Physics 25, 1112 (1956).

    Google Scholar 

  76. Parr, R. G.: Quantum theory of molecular electronic structure, p. 503. New York: Benjamin 1963.

    Google Scholar 

  77. —, and R. Pariser: J. chem. Physics 21, 466 (1953).

    Google Scholar 

  78. Pariser, R., and R. G. Parr: J. chem. Physics 21, 767 (1953).

    Google Scholar 

  79. Pople, J. A.: Trans. Faraday Soc. 49, 1375 (1953).

    Google Scholar 

  80. —, D. P. Santry, and G. A. Segal: J. chem. Physics 43, S 129 (1965).

    Google Scholar 

  81. —, and G. A. Segal: J. chem. Physics 43, S 136 (1965).

    Google Scholar 

  82. —, and P. Schofield: Proc. Roy. Soc. (Lond.) A233, 241 (1956).

    Google Scholar 

  83. Pullman, A., B. Pullman, E. D. Bergman, G. Berthier, E. Fischer, Y. Hirshberg et J. Pontis: J. Chim. physique 48, 359 (1951).

    Google Scholar 

  84. Pujol, L., u. A. Julg: Theoret. chim. Aota (Berl.) 2, 125 (1964).

    Google Scholar 

  85. —: Tetrahedron 21, 717 (1965).

    Google Scholar 

  86. Ransil, B.: Rev. modem Physics 32, 242 (1960).

    Google Scholar 

  87. Robertson, J. M., H. M. M. Shearer, G. A. Sim, and D. G. Watson: Acta Cryst. 15, 1 (1962).

    Google Scholar 

  88. Roothaan, C. C. J.: J. chem. Physics 19, 1445 (1951).

    Google Scholar 

  89. Rouault, M., and Z. L. Waziutynska: Acta Cryst. 10, 804 (1957).

    Google Scholar 

  90. Sandorfy, C., N. Q. Trinh, A. Laforgue, and R. Daudel: J. Chim. physique 46, 655 (1949).

    Google Scholar 

  91. Sappenfield, D. S., and M. M. Kreevoy: Tetrahedron 19, Suppl. 2, 157 (1963).

    Google Scholar 

  92. Sastry, K. V. L. N., and R. F. Curl: J. chem. Physics 41, 77 (1964).

    Google Scholar 

  93. Schott-L'vova, E. A., and Y. K. Syrkin: Chem. Abstr. 33, 4839–7; J. physik. Chem. U.S.S.R. 12, 479 (1938).

    Google Scholar 

  94. Sender, M., and G. Berthier: J. Chim. physique 55, 384 (1958).

    Google Scholar 

  95. Sidman, J. W.: J. chem. Physics 27, 429 (1957).

    Google Scholar 

  96. Skinner, H. A., and H. O. Pritchard: Trans. Faraday Soc. 49, 1254 (1953).

    Google Scholar 

  97. Brown, R. D.: Unpublished tables.

  98. Solony, N., F. W. Birss, and J. B. Greenshields: Canadian J. Chem. 43, 1569 (1965).

    Google Scholar 

  99. Sutton, L. E., Ed.: Tables of interatomic distances. Special Publication No. 11, Chem. Soc., (Lond.) (1958).

  100. Tobler, H. J., A. Bauder, and H. H. Günthard: J. mol. Spectroscopy 18, 239 (1965).

    Google Scholar 

  101. Weaver, J. R., and R. W. Parry: Inorg. Chem. 5, 718 (1966).

    Google Scholar 

  102. Yamakawa, M., H. Watanahe, T. Mukai, T. Nogoe, and M. Kubo: J. Amer. chem. Soc. 82, 5665 (1960).

    Google Scholar 

  103. Weiler-Feilchenfeld, H., I. Agranat, and E. D. Bergmann: Trans. Faraday Soc. 62, 2084 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R.D., Coller, B.A.W. Theoretical calculation of electric dipole moments for conjugated systems. Theoret. Chim. Acta 7, 259–282 (1967). https://doi.org/10.1007/BF00537504

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537504

Keywords

Navigation