Skip to main content
Log in

Electrogenic membrane transport in plants a review

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

This review treats some examples of electrogenic transport across the outer plasmamembrane (plasmalemma) of plant cells. The selection includes primary active uniport by membrane ATPases (e.g., the proton pump), secondary active transport of hexoses by proton-dependent cotransport, and passive uniport of amines. Primacy is given to the presentation of electrophysiological data and to the discussion of voltage-dependence of the transport mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentrup FW (1978) Cell electrophysiology and membrane transport. Prog Bot 40: 84–98

    Google Scholar 

  • Bentrup FW (1979) Reception and transduction of electrical and mechanical stimuli. In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, vol 7: Physiology of movements, Springer Berlin Heidelberg New York, pp 42–70

    Google Scholar 

  • Bowman BJ, Slayman CW (1977) Characterization of plasma membrane adenosine triphosphatase of Neurospora crassa. J Biol Chem 252: 3357–3363

    Google Scholar 

  • Bowman BJ, Blasco F, Slayman CW (1980) Biochemical characterization of the electrogenic proton pump of the Neurospora plasma membrane. In: Dutton PL, Leigh JS, Scarpa A (eds) Frontiers of biological energetics. Academic Press, New York London, pp 525–535

    Google Scholar 

  • Cole KS (1968) Membranes, ions, and impulses. University of California Press, Berkeley Los Angeles London

    Google Scholar 

  • Felle H (1980) Amine transport at the plasmalemma of Riccia fluitans. Biochim Biophys Acta (in Press)

  • Felle H, Bentrup FW (1976) Effect of light upon membrane potential, conductance, and ion fluxes in Riccia fluitans. J Membr Biol 27: 153–170

    Google Scholar 

  • Felle H, Bentrup FW (1980) Hexose transport and membrane depolarization in Riccia fluitans. Planta 147: 471–476

    Google Scholar 

  • Felle H, Lühring H, Bentrup FW (1979) Serine transport and membrane depolarization in the liverwort Riccia fluitans. Z Naturforsch 34c: 1222–1223

    Google Scholar 

  • Finkelstein A (1964) Carrier model for active transport of ions across a mosaic membrane. Biophys J 4: 421–440

    Google Scholar 

  • Geck P, Heinz E (1976) Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport. Biochim Biophys Acta 443: 49–63

    Google Scholar 

  • Giaquinta R (1977) Phloem loading of sucrose. pH dependence and selectivity. Plant Physiol 9: 750–755

    Google Scholar 

  • Gradmann D (1970) Einflu\ von Licht, Temperatur und Au\enmedium auf das elektrische Verhalten von Acetabularia crenulata. Planta 93: 323–353

    Google Scholar 

  • Gradmann D (1975) Analog circuit of the Acetabularia membrane. J Membr Biol 25: 183–208

    Google Scholar 

  • Gradmann D (1976) “Metabolic” Action potentials in Acetabularia. J Membr Biol 29: 23–45

    Google Scholar 

  • Gradmann D (1978) Green light (550 nm) inhibits electrogenic Cl pump in the Acetabularia membrane by permeability increase for the carrier ion. J Membr Biol 44: 1–24

    Google Scholar 

  • Gradmann D, Hansen U-P, Long WS, Slayman CL, Warncke J (1978) Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady state conditions. J Membr Biol 39: 333–367

    Google Scholar 

  • Graves JS, Gutknecht J (1976) Ion transport studies and determination of the cell wall elastic modulus in the marine alga Halicystis parvula. J Gen Physiol 67: 579–597

    Google Scholar 

  • Heinz E, Geck P (1977) The electrical potential difference as a driving force in Na+-linked cotransport of organic solutes. In: Hoffmann JF (ed) Membrane transport processes, vol 1. Raven Press, New York, pp 13–30

    Google Scholar 

  • Hutchings VM (1978) Sucrose and proton cotransport in Ricinus cotyledons. Planta 138: 229–241

    Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6: 445–476

    Google Scholar 

  • Junge W (1977) Membrane potentials in photosynthesis. Annu Rev Plant Physiol 28: 503–536

    Google Scholar 

  • Keifer DW, Spanswick RM (1978) Activity of the electrogenic pump in Chara corallina as inferred from measurements of the membrane potential, conductance, and potassium permeability. Plant Physiol 62: 653–661

    Google Scholar 

  • Komor E (1977) Sucrose uptake by cotyledons of Ricinus communis L.: Characteristics, mechanism, and regulation. Planta 137: 119–131

    Google Scholar 

  • Komor E, Tanner W (1974) The hexose-proton cotransport system of Chlorella. pH-dependent change in K m values and translocation constants of the uptake system. J Gen Physiol 64: 568–581

    Google Scholar 

  • Komor E, Tanner W (1976) The determination of the membrane potential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Eur J Biochem 70: 197–204

    Google Scholar 

  • LÄuger P (1973) Ion transport through pores: A rate-theory analysis. Biochim Biophys Acta 311: 423–441

    Google Scholar 

  • LÄuger P (1979) A channel mechanism for electrogenic ion pumps. Biochim Biophys Acta 552: 143–161

    Google Scholar 

  • Lucas WJ (1979) Alkaline band formation in Chara corallina. Due to OH efflux or H+ influx? Plant Physiol 63: 248–254

    Google Scholar 

  • Lucas WJ, Dainty J (1977a) HCO 3 influx across the plasmalemma of Chara corallina. Divalent cation requirement. Plant Physiol 60: 862–867

    Google Scholar 

  • Lucas WJ, Dainty J (1977b) Spatial distribution of OH carriers along a characean internodal cell: Determined by the effect of cytochalasin B on H14CO 3 assimilation. J Membr Biol 32: 75–92

    Google Scholar 

  • Lucas WJ, Ferrier JM, Dainty J (1977) Plasmalemma transport of OH in Chara corallina. Dynamics of activation and deactivation. J Membr Biol 32: 49–73

    Google Scholar 

  • Lucas WJ, Tyree MT, Petrov A (1978) Characterization of photosynthetic 14carbon assimilation by Potamogeton lucens L. J Exp Bot 29: 1409–1421

    Google Scholar 

  • Mitchell P (1967) Translocation through natural membranes. Adv Enzymol 29: 33–87

    Google Scholar 

  • Novák B, Bentrup FW (1972) An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 108: 227–244

    Google Scholar 

  • Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29: 437–460

    Google Scholar 

  • Raven J (1976) Transport in algal cells. In: Lüttge U, Pitman MG (eds) Transport in plants, vol II, pt. A. Springer, Berlin Heidelberg New York, pp 129–188

    Google Scholar 

  • Scarborough GA (1977) Properties of the Neurospora crassa plasma membrane ATPase. Arch Biochem Biophys 180: 384–393

    Google Scholar 

  • Shimmen T, Tazawa M (1977) Control of membrane potential and excitability of Chara cells with ATP and Mg2+. J Membr Biol 37: 167–192

    Google Scholar 

  • Slayman CL, Gradmann D (1975) Electrogenic proton transport in the plasma membrane of Neurospora. Biophys J 15: 968–969

    Google Scholar 

  • Slayman CL, Slayman CW (1974) Depolarization of the plasma membrane of Neurospora during active transport of glucose: Evidence for a proton-dependent cotransport system. Proc Natl Acad Sci USA 71: 1935–1939

    Google Scholar 

  • Slayman CL, Long WS, Lu CY-H (1973) The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol 14: 305–338

    Google Scholar 

  • Spanswick RM (1972) Evidence for an electrogenic pump ion in Nitella translucens. I. effects of pH, K+, Na+, light and temperature on the membrane potential and resistance. Biochim Biophys Acta 288: 73–89

    Google Scholar 

  • Spanswick RM (1973) Electrogenesis in photosynthetic tissues. In: Anderson WP (ed) Ion transport in plants. Academic Press, London New York, pp 113–128

    Google Scholar 

  • Spanswick RM, Lucas WJ, Dainty J (eds) (1980) Plant membrane transport: Current conceptual issues. Elsevier North-Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Ullrich-Eberius CI, Novacky A, Lüttge U (1978) Active hexose uptake in Lemna gibba G1. Planta 139: 149–153

    Google Scholar 

  • Van Steveninck J, Rothstein A (1965) Sugar transport and metal binding in yeast. J Gen Physiol 49: 235–246

    Google Scholar 

  • Walker NA, Smith FA (1977) Circulating electric currents between acid and alkaline zones associated with HCO 3 assimilation in Chara. J Exp Bot 28: 1190–1206

    Google Scholar 

  • Walker NA, Beilby MJ, Smith FA (1979) Amine uniport at the plasmalemma of charophyte cells: I. Current-voltage curves, saturation kinetics, and effects of unstirred layers. J Membr Biol 49: 21–55

    Google Scholar 

  • Warshel A (1979) Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium. Photochem Photobiol 30: 285–290

    Google Scholar 

  • Westerhoff HV, Dam K Van (1979) Irreversible thermodynamic description of energy transduction in biomembranes. Curr Top Bioenerg 9: 1–62

    Google Scholar 

  • Zimmermann U (1978) Physics of turgor- and osmoregulation. Annu Rev Plant Physiol 29: 121–148

    Google Scholar 

  • Zimmermann U, Steudle E (1978) Physical aspects of water relations of plant cells. Adv Bot Res 6: 45–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Lecture from the Annual Meeting of the Deutsche Gesellschaft für Biophysik at Konstanz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentrup, F.W. Electrogenic membrane transport in plants a review. Biophys. Struct. Mechanism 6, 175–189 (1980). https://doi.org/10.1007/BF00537292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537292

Key words

Navigation