Advertisement

Theoretica chimica acta

, Volume 6, Issue 4, pp 320–332 | Cite as

Electronic structures and spectra of adenine and thymine

  • Masashi Tanaka
  • Saburo Nagakura
Commentationes

Abstract

The near and vacuum ultraviolet spectra of adenine and thymine were measured with the evaporated film method and in solution. The absorption spectrum of the adenine anion in basic solution was also measured. The assignment of the absorption bands was made by comparing the observed transition energies and intensities with the theoretical results obtained by the LCAO-SCF-CI-method. The results indicated that the longest wavelength band of adenine at 269 mμ is a π→π* transition band. This was supported by the fact that a new band due to the n→π* transition was found at 278 mμ for the adenine anion. Furthermore, it was shown that the thymine molecule may interact strongly with the solvent molecules and that the electronic structure of thymine in solution may be different from that of the free molecule.

Keywords

Adenine Solvent Molecule Transition Energy Thymine Longe Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die UV-Spektren von Adenin und Thymin in Lösung bzw. als dünne Filme wurden bis 160 mμ, herunter gemessen, außerdem das Spektrum vom Adenin-Anion in basischer Lösung. Auf Grund der Ergebnisse einer LCAO-SCF-CI-Rechnung wurde eine Zuordnung der Banden vorgenommen. Danach ist die langwellige Bande bei 269 mμ ein π→π*-Übergang, die neue Bande des Adenin-Anions bei 278 mμ dagegen ein n→π*-Übergang. Die Elektronenstruktur von Thymin kann durch das Lösungsmittel stark beeinflußt werden.

Résumé

Les spectres dans l'ultraviolet proche de l'adénine et de la thymine ont été mesurés avec la méthode du film évaporé et en solution. Le spectre d'absorption de l'anion adénine en solution basique a été aussi mesuré. L'identification des bandes d'absorption a été faite en comparant les énergies de transition et les intensités observées avec les résultats théoriques obtenus par la méthode LCAO-SCF-CI. Les résultats indiquent que la bande de plus grande longueur d'onde de l'adénine à 269 mμ, qui a été considérée comme une transition n→π* par certains auteurs, est une bande de transition π→π*. Ceci est confirmé par le fait qu'une nouvelle bande, dûe á la transition n→π*, a été observée à 278 mμ pour l'anion adénine. De plus, on a montré que la molécule de thymine peut interagir fortement avec les molécules de solvant et que la structure électronique de la thymine en solution peut être différente de celle de la molécule libre.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berthod, H., C. Giessner-Prettre, and A. Pullman: Theoret. chim. Acta 5, 53 (1966).Google Scholar
  2. [1a]
    Clark, L. B., and I. Tinoco, Jr.: J. Amer. chem. Soc. 87, 11 (1965).Google Scholar
  3. [2]
    Clementi, E, C. C. J. Roothahn, and M. Yoshimine: Physic. Rev. 127, 1618 (1962).Google Scholar
  4. [3]
    Fischer-Hjarmars, I.: J. chem. Physics 42, 962 (1965).Google Scholar
  5. [4]
    —: In: Molecular Orbitals in Chemistry, Physics and Biology, ed. P. O. Löwdin, and B. Pullman, p. 370. New York: Academic Press 1964.Google Scholar
  6. [5]
    Goeppert-Mayer, M., and A. L. Sklar: J. chem. Physics 6, 645 (1938).Google Scholar
  7. [6]
    Ladik, J., and T. A. Hoffman: Biopolymer Symp. 1, 117 (1964).Google Scholar
  8. [6a]
    —, and K. Appel: Theoret. chim. Acta 4, 132 (1966).Google Scholar
  9. [7]
    Löwdin, P. O.: J. chem. Physics 18, 365 (1950).Google Scholar
  10. [8]
    —: Advan. Physics 5, 111 (1956).Google Scholar
  11. [9]
    Lykos, P. G.: J. chem. Physics 35, 1249 (1961).Google Scholar
  12. [10]
    Mason, S. F.: J. chem. Soc. (London) 1960, 219; 1954, 20 and references therein.Google Scholar
  13. [11]
    McWeeny, R.: Proc. Roy. Soc. (London) A 227, 288 (1955); A 237, 355 (1956).Google Scholar
  14. [12]
    Nagata, C., A. Imamura, Y. Tagashira, and M. Kodama: Bull. chem. Soc. Japan 38, 1938 (1965).Google Scholar
  15. [13]
    Nakanishi, K., N. Suzuki, and F. Yamazaki: Bull. chem. Soc. Japan 34, 53 (1961).Google Scholar
  16. [14]
    Nesbet, R. K.: Biopolymer Symp. 1, 129 (1964).Google Scholar
  17. [15]
    Pariser, R., and R. G. Parr: J. chem. Physics 21, 466, 767 (1953).Google Scholar
  18. [16]
    —: J. chem. Physics 21, 568 (1953).Google Scholar
  19. [17]
    Parr, R. G.: Quantum Theory of Molecular Electronic Structure. New York: Benjamin 1963.Google Scholar
  20. [18]
    Pauling, L., and R. B. Corey: Arch. Biochem. Biophys. 65, 164 (1956).Google Scholar
  21. [19]
    Pople, J. A.: Trans. Faraday Soc. 49, 1375 (1953).Google Scholar
  22. [20]
    Pullman, A., and B. Pullman: Bull. soc. chim. France 1958, 766; 1959, 594.Google Scholar
  23. [21]
    Roothaan, C. C. J.: Rev. mod. Physics 23, 69 (1951).Google Scholar
  24. [22]
    —: J. chem. Physics 19, 1445 (1951).Google Scholar
  25. [23]
    Ruedenberg, K.: J. chem. Physics 34, 1861 (1961).Google Scholar
  26. [24]
    Spencer, M.: Acta Cryst. 12, 59 (1959).Google Scholar
  27. [25]
    Stewart, R. F., and N. Davidson: J. chem. Physics 39, 255 (1963).Google Scholar
  28. [25a]
    —, and L. H. Jensen: J. chem. Physics 40, 2071 (1964).Google Scholar
  29. [26]
    Tsubomura, H., K. Kimura, K. Kaya, J. Tanaka, and S. Nagakura: Bull. chem. Soc. Japan 37, 418 (1964).Google Scholar
  30. [27]
    Veillard, A., and B. Pullman: J. theoret. Biol. 4, 37 (1963).Google Scholar
  31. [28]
    Voet, D., W. B. Gratzer, R. A. Cox, and P. Doty: Biopolymers 1, 193 (1963).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Masashi Tanaka
    • 1
  • Saburo Nagakura
    • 1
  1. 1.The Institute for Solid State Physicsthe University of TokyoTokyoJapan

Personalised recommendations