Skip to main content
Log in

Tensor-orientierte Formulierung nichtlinearer, finiter Schalenelemente

Tensor-oriented formulation of nonlinear, finite shell elements

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Übersicht

In unmittelbarer Anlehnung an die Tensorformulierung geometrisch nichtlinearer Flächentrag-werkstheorien werden besonders genaue, finite Weggrößenmodelle hergeleitet. Sie sind für beliebige Schalen-formen einsetzbar und dienen insbesondere zur Simulation kritischer und überkritischer Systemantworten. Der vorliegende Aufsatz beschreibt die Herleitung der Elemente und überprüft deren Konvergenzverhalten und Leistungsfähigkeit.

Summary

In accordance with the tensor formulation of geometrically nonlinear shell theories high precision finite displacement models will be developed. They can be applied to arbitrarily curved shell shapes and are especially able to simulate critical and supercritical mechanical responses. The paper describes the derivation of the elements and investigates their convergence behavior and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Koiter, W. T.: On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wet. B 69 (1966) 1–54

    Google Scholar 

  2. Naghdi, P. M.: The theory of shells and plates. Beitrag in: Handbuch der Physik, Band VI, A2. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  3. Basar, Y.; Krätzig, W. B.: Mechanik der Flächentragwerke. Braunschweig, Wiesbaden: Vieweg 1985

    Google Scholar 

  4. Basar, Y.; Krätzig, W. B.: Energy-consistent linear and nonlinear stability equations for hyperelastic shells. In: Stability in the mechanics of continua, 2nd IUTAM-Symp., Nümbrecht. Berlin, Heidelberg, New York: Springer 1982, S. 133–145

    Google Scholar 

  5. Pietraszkiewicz, W.: Introduction to the non-linear theory of shells. Ruhr-Universität Bochum: Mitteilung Nr. 10 Inst. f. Mechanik, Bochum 1977

    Google Scholar 

  6. Pietraszkiewicz, W.: Finite rotations and Lagrangean description in the non-linear theory of shells. Warschau, Posen: Pol. Sci. Publ. 1979

    Google Scholar 

  7. Green, A. E.; Zerna, W.: Theoretical elasticity. 2. Ausg. Oxford: Clarendon 1968

    Google Scholar 

  8. Harte, R.: Doppelt gekrümmte finite Dreieckelemente für die lineare und geometrisch nichtlineare Berechnung allgemeiner Flächentragwerke. Ruhr-Universität Bochum: TWM Nr. 82-10 Inst. f. Konstr. Ing.-Bau, Bochum 1982

    Google Scholar 

  9. Krätzig, W. B.: Thermodynamics of deformation and shell theory. Ruhr-Universität Bochum: TWM Nr. 71-3 Inst. f. Konstr. Ing.-Bau, Bochum 1971

    Google Scholar 

  10. Harnach, R.; Krätzig, W. B.: Allgemeine Theorie geometrisch nichtlinearer, insbesondere leichter Flächentragwerke. Ruhr-Universität Bochum: TWM Nr. 76-3 Inst. f. Konstr. Ing.-Bau, Bochum 1976

    Google Scholar 

  11. Krätzig, W. B.; Basar, Y.; Wittek, U.: Nonlinear behaviour and elastic stability of shells. In: Buckling of shells. Berlin, Heidelberg, New York: Springer 1982, S. 19–56

    Google Scholar 

  12. Cowper, G. R.: Gaussian quadrature formulas for triangles. Int. J. Num. Meth. Engng. 7 (1973) 405–408

    Google Scholar 

  13. Eckstein, U.; Harte, R.; Krätzig, W. B.; Wittek, U.: Solution strategies for linear and nonlinear instability phenomena for arbitrarily curved thin shell structures. SMIRT 7, L6/2: Chicago 1983, pp. 163–170

  14. Harte, R.; Eckstein, U.: Derivation of geometrically nonlinear finite shell elements via tensor notation. Int. J. Num. Methods Eng. (to appear)

  15. Eckstein, U.: Nichtlineare Stabilitätsberechnung elastischer Schalentragwerke. Ruhr-Universität Bochum: TWM Nr. 83-3 Inst. f. Konstr. Ing.-Bau, Bochum 1983

    Google Scholar 

  16. Bazeley, G. P.; Cheung, Y. K.; Irons, B. M.; Zienkiewicz, O. C.: Triangular elements in bending — conforming and nonconforming solutions. Proc. 1st Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB: Ohio 1965, pp. 547–576

    Google Scholar 

  17. Cowper, G. R.: CURSHL: A high-precision finite element for shells of arbitrary shape. Nat. Res. Counc. Can. Aeronaut. Rep. (1971)

  18. Bell, K.: Triangular plate bending elements. In: Finite element methods in stress analysis. Trondheim: Tapir 1969, pp. 213–252

    Google Scholar 

  19. Bogner, F. K.; Fox, R. L.; Schmit, L. A.: The generation of the interelement compatible stiffness and mass matrices by the use of interpolation formulas. Proc. 1st Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB 1965, p. 397

  20. Harbord, R.: Berechnung dünner Schalentragwerke mit finiten Elementen — Vergleichende Unter- suchung unterschiedlicher Diskretisierungsvarianten. TU Braunschweig: Bericht Nr. 77-21 Inst. f. Statik, Braunschweig 1977

    Google Scholar 

  21. Zienkiewicz, O. C.: The finite element method. 3rd Ed. London: McGraw-Hill 1977

    Google Scholar 

  22. Gallagher, R. H.: Finite element analysis — fundamentals. New Jersey: Prentice Hall 1975

    Google Scholar 

  23. Fried, I.: Basic computational problems in the finite element analysis of shells. Int. J. Sol. Struct. 7 (1971) 1701–1715

    Google Scholar 

  24. Stolarski, H.; Belytschko, T.: Shear and membrane locking in curved C 0-elements. Comp. Meth. Appl. Mech. Engng. 41 (1983) 279–296

    Google Scholar 

  25. Argyris, J. H.; Scharpf, D. W.: The SHEBA family of shell elements for the matrix displacement method. Aeron. J. Roy. Aeron. Soc. 72 (1968) 873–883

    Google Scholar 

  26. Dupuis, G. A.; Goël, J.-J.: A curved finite element for thin elastic shells. Int. J. Sol. Struct. 6 (1970) 1413–1428

    Google Scholar 

  27. Koiter, W. T.: A spherical shell under point load at its poles. Prog. in Appl. Mech. New York: ThePrager Anniv. Vol. 1963

  28. Flügge, W.: Stresses in shells. 2. Ausg. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  29. Sabir, A. B.; Lock, A. C.: The application of finite elements to the large deflection geometrically nonlinear behavior of cylindrical shells. In: Var. Meth. in Engng. Southampton 1972, pp. 7166–7175

  30. Ramm, E.: Strategies for tracing nonlinear response near limit points. In: Nonlinear finite element analysis in structural mechanics. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harte, R., Krätzig, W.B. Tensor-orientierte Formulierung nichtlinearer, finiter Schalenelemente. Ing. arch 56, 114–129 (1986). https://doi.org/10.1007/BF00537241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537241

Navigation