0-1-sequences of Toeplitz type

  • Konrad Jacobs
  • Michael Keane


0-1-sequences are constructed by successive insertion of a periodic sequence of symbols 0, 1 and “hole” into the “holes” of the sequence already constructed. Assuming that finally all “holes” are filled with symbols 0, 1, an almost periodic point in shift space results. Under certain conditions, it is even strictly ergodic. It is proved that the attached invariant measure has pure point spectrum, and a rather explicit expression for eigenvectors is obtained.


Stochastic Process Probability Theory Explicit Expression Invariant Measure Mathematical Biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gottschalk, W.: Almost periodic points with respect to transformation semigroups. Ann. of Math., II. Ser. 47, 762–766 (1946).Google Scholar
  2. 2.
    Hahn, F., and Y. Katznelson: On the entropy of uniquely ergodic transformations. Trans. Amer. math. Soc. 126, 335–360 (1967).Google Scholar
  3. 3.
    Jacobs, K.: Systèmes dynamiques Riemanniens (à paraÎtre).Google Scholar
  4. 4.
    Kakutani, S.: Ergodic theory of shift transformations. Proc. V. Berkeley Sympos. math. Statist. Probab. II, 2, 405–414 (1967).Google Scholar
  5. 5.
    Keane, M.: Generalized Morse sequences. Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 335–353 (1968).Google Scholar
  6. 6.
    Oxtoby, J. C.: Ergodic sets. Bull. Amer. math. Soc. 58, 116–136 (1952).Google Scholar
  7. 7.
    Toeplitz, O.: Beispiele zur Theorie der fastperiodischen Funktionen. Math. Ann. 98, 281–295 (1928).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Konrad Jacobs
    • 1
  • Michael Keane
    • 2
  1. 1.Mathematisches Institut der UniversitÄt Erlangen-NürnbergErlangen
  2. 2.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations