Der Einfluß von Hydrochlorothiazid und anderen sulfonamidierten Diuretica auf die 3′,5′-AMP-Phosphodiesterase-Aktivität in der Rattenniere

  • G. Senft
  • K. Munske
  • G. Schultz
  • M. Hoffmann
Article

Schlüsselwörter

3′,5′-AMP-Phosphodiesterase Diuretica antidiuretische Wirkung von Diuretica Wasserpermeabilität Diabetes insipidus 

The influence of hydrochlorothiazide and other sulfamoyl diuretics on the activity of 3′,5′-AMP phosphodiesterase in rat kidney

Summary

Vasopressin has been reported to accelerate the conversion of adenosine triphosphate to cyclic 3′,5′-AMP by stimulating the activity of the adenyl cyclase. According to the view of Orloff and Handler cyclic 3′,5′-AMP is responsible for the augmentation of osmotic water flow. The cyclic nucleotide ist degraded by the enzyme 3′,5′-AMP phosphodiesterase (PDE) to 5′-AMP. Inhibition of this enzyme by theophylline results in an increase in the concentration of 3′,5′-AMP and a concomittant increase in osmotic water flow, as shown in the urinary bladder of the toad (Bufo marinus).

The experiments presented in this paper derived from a previous observation that furosemide and hydrochlorothiazide inhibit PDE. Both diuretics have been shown to reduce renal PDE activity when injected i.v. to rats in a dose of 25 mg/kg. Following injection of furosemide PDE activity has been found reduced only in the cortex, the effect of hydrochlorothiazide has been shown to be restricted to the inner medulla.

Studies on the subcellular distribution of renal PDE revealed two fractions, one third of total activity bound to large particles, probably cell membranes, two third soluble in the hyaloplasm. The two fractions of the enzyme differ in their km-value for 3′,5′-AMP. Subcellular distribution and km-values of PDE in the liver have been found to be identical with those in the kidney.

Hydrochlorothiazide has been shown to affect both fractions of renal PDE. Because of the restriction of the action of furosemide to the renal cortex no attempt was made to differentiate the effect of the compound with respect to its subcellular localization. Accumulation of 3′,5′-AMP caused by an impaired degradation of the nucleotide in this region could lead to an increase in the permeability of the distal convoluted tubules to water. As the difference in the osmotic pressure between distal tubular fluid and the surrounding interstitial fluid is relatively small, the increase in water permeability can only result in a small increase in tubular water reabsorption. In view of hydrochlorothiazide reducing PDE activity in the inner medulla and the high difference in the osmotic pressure between the fluid in the collecting tubules and the interstitial fluid it is suggested that a hydrochlorothiazide induced increase in water permeability results in a high increase in water rea-absorption, especially in diabetes insipidus where there is a low osmolarity of the tubular fluid in the collecting duct with an unimpaired cortico-papillary osmotic gradient. This corresponds to the paradoxical antidiuretic effect of diuretics in the treatment of diabetes insipidus centralis and renalis, especially after diuretic induced sodium depletion and reduction of the osmolarity of tubular fluid resulting in an increased osmotic difference between fluids within collecting ducts and interstitium.

Key-Words

3′,5′-AMP Phosphodiesterase Diuretics Antidiuretic Action of Diuretics Water Permeability Diabetes Insipidus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson, W. A., Jr., and E. Brown: The influence of arginine vasopressin upon the production of adenosine 3′,5′-monophosphate by adenyl cyclase from the kidney. Biochim. biophys. Acta (Amst.) 67, 674 (1963).Google Scholar
  2. Baba, W. I., A. F. Lant, and G. M. Wilson: The action of oral diuretics in diabetes insipidus. Proc. Royal Soc. Med. 58, 911 (1965).Google Scholar
  3. Brodehl, J., K. Gellissen u. W. Hagge: Die Wirkung des Vasopressins beim Diabetes insipidus renalis. Klin. Wschr. 43, 72 (1965).Google Scholar
  4. Brodie, B. B., J. I. Davies, S. Hynie, G. Krishna, and B. Weiss: Interrelationship of catecholamines with other endocrine systems. Pharmacol. Rev. 18, 273 (1966).Google Scholar
  5. Butcher, R. W., and E. W. Sutherland: Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclie 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. biol. Chem. 237, 1244 (1962).Google Scholar
  6. Crawford, J. D., L. Frost, M. Welsh, and M. L. Terry: Relations between pharmacologic activity and molecular structure of certain saliuretic sulfonamides. J. Pharmacol. exp. Ther. 135, 382 (1962).Google Scholar
  7. ——, and G. C. Kennedy: Chlorothiazid in diabetes insipidus. Nature (Lond.) 183, 891 (1959).Google Scholar
  8. Cutler, R., C. R. Kleeman, J. T. Dowling, and M. H. Maxwell: Physiological studies in a family with nephrogenic (vasopressin-resistant) diabetes insipidus. J. clin. Invest. 39, 980 (1960).Google Scholar
  9. Díes, F., R. M. Cobos, and A. Rivera: Effect of a benzothiadiazine derivative on the permeability to water of isolated membranes. Endocrinology 71, 332 (1962).Google Scholar
  10. ——, and A. Rivera: Treatment of diabetes insipidus with orally administered compounds. Clin. Pharmac. Therap. 4, 602 (1963).Google Scholar
  11. Dige-Petersen, H.: Antidiuretisk effekt af etakrynsyre. Nordisk Medicin 3, 125 (1966).Google Scholar
  12. Earley, L. E., and J. Orloff: The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J. clin. Invest. 41, 1988 (1962).Google Scholar
  13. Gillenwater, J. Y.: Antidiuretic properties of chlorothiazide in diabetes insipidus dogs. Metabolism 14, 539 (1965).Google Scholar
  14. Grantham, J. J., and J. Orloff: Unpublished observations, zitiert nach: Orloff, J., and J. S. Handler: The role of adenosine 3′,5′-phosphate in the action of antiduretic hormone. Amer. J. Med. 42, 757 (1967).Google Scholar
  15. Handler, J. S., R. W. Butcher, E. W. Sutherland, and J. Orloff: The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad. J. biol. Chem. 240, 4524 (1965).Google Scholar
  16. Heller, J., V. Škrová, and J. Vostál: The effect of various diuretic agents on renal electrolyte and urea concentration gradients in rats. Experientia 21, 454 (1965).Google Scholar
  17. Irmscher, K., P. Böhm u. H. Zimmermann: Zur Wirkung der Sali-Diuretica beim Diabetes insipidus. Arch. klin. Med. 209, 289 (1964).Google Scholar
  18. Kennedy, G. C., and J. D. Crawford: Treatment of diabetes insipidus with hydrochlorothiazide. Lancet 1959 I, 866.Google Scholar
  19. Linke, A.: Die Behandlung der Diabetes insipidus mit saluretischen Sulfonamiden. Med. Welt 1960 I, 968.Google Scholar
  20. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall: Protein measurement with the Folin reagent. J. biol. Chem. 193, 265 (1951).Google Scholar
  21. Miller, W. H., A. M. Dessert, and R. O. Roblin, jr.: Heterocyclic sulfonamides as carbonic anhydrase inhibitors. J. Amer. chem. Soc. 72, 4893 (1950).Google Scholar
  22. Moore, P.: Discussion. In: Conference on Diazoxide and the treatment of hyperglycemia, 5.–6. Jan. 1967, The New York Academy of Sciences (im Druck) (1967).Google Scholar
  23. Orloff, J., and J. S. Handler: The similarity of effects of vasopressin, 3′5′-AMP (cyclic AMP) and theophylline on the toad bladder. J. clin. Invest. 41, 702 (1962).Google Scholar
  24. —— —— The cellular mode of action of antidiuretic hormone. Amer. J. Med. 36, 686 (1964).Google Scholar
  25. —— —— The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone. Amer. J. Med. 42, 757 (1967).Google Scholar
  26. Pätau, K.: Zur statistischen Beurteilung von Messungsreihen (eine t-Tafel). Biol. Zbl. 63, 154 (1943).Google Scholar
  27. Ramos, G., A. Rivera, J. C. Peña, and F. Díes: Mechanism of the antidiuretic effect of saluretic drugs. Studies in patients with diabetes insipidus. Clin. Pharm. Therap. 8, 557 (1967).Google Scholar
  28. Robson, J. S., and A. T. Lambie: The effect of chlorothiazide in diabetes insipidus with particular reference to the osmolality of the serum. Metabolism 11, 1041 (1962).Google Scholar
  29. Schultz, G., G. Senft, W. Losert u. R. Sitt: Biochemische Grundlagen der Diazoxid-Hyperglykämie. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 372 (1966).Google Scholar
  30. Schwartz, I. L., and R. Walter: Factors influencing the reactivity of the toad bladder to the hydro-osmotic action of vasopressin. Amer. J. Med. 42, 769 (1967).Google Scholar
  31. Senft, G.: On the action of benzothiadiazines and related compounds on enzymic and hormonal regulations of carbohydrate metabolism. Salt and Water Balance Symposium, 3. Internationaler Pharmakologen-Kongreß, São Paulo 1966, Vol. 8, S. 83. Oxford: Pergamon Press 1967 (im Druck).Google Scholar
  32. ——, and G. Schultz: Effects of hydration and dehydration on cyclic adenosine 3′,5′-monophosphate concentration in the rat kidney. Pflügers Arch. ges. Physiol. 298, 348 (1968).Google Scholar
  33. —— u. H. K. Bartelheimer: Ursachen der Störung im Kohlenhydratstoffwechsel unter dem Einfluß sulfonamidierter Diuretica. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 369 (1966).Google Scholar
  34. Shanta, T. R., W. D. Wooda, M. B. Waitsman, and G. H. Bourne: Histochemical method for localisation of cyclic 3′,5′-nucleotide phosphodiesterase. Histochemie 7, 177 (1966).Google Scholar
  35. Ullrich, K. J., K. Baumann, K. Loeschke, G. Rumrich, and H. Stolte: Micropuncture experiments with saluretic sulfonamides. Ann. N. Y. Acad. Sci. 139, 416 (1966).Google Scholar
  36. ——, u. K. Hierholzer: Physiologie der Niere; in H. Sarre: Nierenkrankheiten. Stuttgart: Thieme 1967.Google Scholar
  37. Ullrich, K. J., K. Kramer, and J. W. Boylan: Present knowledge of the countercurrent system in the mammalian kidney. Prog. Cardiovasc. Dis. 3, 395 (1961).Google Scholar
  38. —— u. G. Fuchs: Wasserpermeabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol. 280, 99 (1964).Google Scholar
  39. Valtin, H.: Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: Effect of vasopressin and dehydration on the countercurrent mechanism. J. clin. Invest. 45, 337 (1966).Google Scholar
  40. Weber, J. W., u. E. Gautier: Pitressinresistenter Diabetes insipidus. Therapie mit Saldiuretica. Helv. paed. acta 16, 565 (1961).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • G. Senft
    • 1
  • K. Munske
    • 1
  • G. Schultz
    • 1
  • M. Hoffmann
    • 1
  1. 1.Pharmakologisches Institut der Freien Universität BerlinGermany

Personalised recommendations