, Volume 55, Issue 2, pp 114–123 | Cite as

On the practical use of Euler-Rodrigues parameters in multibody system dynamic simulation

  • R. E. Roberson


Computational details of how the Euler-Rodrigues parameters can be applied to rotations with one, two or three dynamical degrees of freedom are given. The complexity of this implementation is compared with that of the usual representation of rotation by angle variables. Conclusions are that Euler-Eodrigues parameters are fully competitive, computationally, with the use of angle variables, regardless of the nature of the rotation. Redundant kinematical equations are not essential. In certain cases Euler-Rodrigues parameters are distinctly superior.


Neural Network Complex System Information Theory Nonlinear Dynamics Dynamic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zur Verwendung von Euler-Rodrigues Parametern bei der Simulation der Dynamik Ton Mehrkörpersystemen


Rechentechnische Details zur Verwendung von Euler-Rodrigues Parametern bei Rotationen mit einem, zwei oder drei Freiheitsgraden werden angegeben. Die Komplexität dieser Vorgehensweise wird mit der üblichen Verwendung von Winkeln zur Darstellung von Rotationen verglichen. Man erkennt, daß eine Verwendung von Euler-Rodrigues Parametern nicht notwendigerweise zu überzähligen kinematischen Gleichungen führt und daß diese Parameter den Winkelvariablen bei beliebigen Rotationen völlig gleichwertig sind. In Sonderfällen sind die Euler-Rodrigues Parameter sogar wesentlich vorteilhafter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberson, R. E.: Kinematical equations for bodies whose rotation is described by the Euler-Rodrigues parameter (sic). AIAA A6 (1968) 916–917Google Scholar
  2. 2.
    Schwertassek, R.; Roberson, R. E.: A state-space dynamical representation for multibody mechanical systems. Part 1: Systems with tree configurations; Part 2: Systems with closed loops. Acta Mech. 50 (1983) 141–161 and 51 (1984) 15–29Google Scholar
  3. 3.
    Kane, T. R.; Levinson, D. A.: Formulation of equations of motion for complex spacecraft. J. Guidance Control 3 (1980) 99–112Google Scholar
  4. 4.
    Roberson, R. E.: Correction of numerical error in kinematic differential equations when one direction cosine is known. Comput. Meth. Appl. Mech. Eng., to appear.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. E. Roberson
    • 1
  1. 1.Department of Applied Mechanics and Engineering ScienceUniversity of California San DiegoLa JollaUSA

Personalised recommendations