Advertisement

Gaussian processes on compact symmetric spaces

  • R. Askey
  • N. H. Bingham
Article

Abstract

Paul Lévy studied Gaussian processes ξ(a) with the parameter a running over Euclidean d-space R d and he also studied the case when a runs over the d-sphere S d . His results were extended by Gangolli in a number of directions, one being the extension to the cases where the parameter a lies in the other two-point homogeneous Riemannian manifolds. In the compact cases Gangolli showed there was a distinction between spheres and projective spaces, in that the process discovered by Lévy which he called Brownian motion parametrized by spheres does not exist for projective spaces. However many interesting Gaussian process exist with parameters running through projective spaces as we show.

Keywords

Manifold Stochastic Process Brownian Motion Probability Theory Riemannian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Askey, R.: Jacobi polynomial expansions with positive coefficients and imbeddings of projective spaces. Bull. Amer. Math. Soc. 74, 301–304 (1968)Google Scholar
  2. 2.
    Askey, R., Gasper, G.: Linearization of the product of Jacobi polynomials III. Canad. J. Math. 23, 332–338 (1971)Google Scholar
  3. 3.
    Askey, R., Gasper, G.: Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients. Proc. Cambridge Philos. Soc. 70, 243–255 (1971)Google Scholar
  4. 4.
    Bingham, N.H.: Random walks on spheres. Z. Wahrscheinlichkeitstheorie verw. Gebiete 22, 169–192 (1972)Google Scholar
  5. 5.
    Bingham, N.H.: Positive definite functions on spheres. Proc. Cambridge Philos. Soc. 73, 145–156 (1973)Google Scholar
  6. 6.
    Borel, A.: Le plan projectif des octaves et les sphères comme espaces homogènes. C.R. Acad. Sci. Sér. A-B Paris 230, 1378–1380 (1950)Google Scholar
  7. 7.
    Erdélyi, A. et al.: Higher Transcendental Functions, vol. I and II. New York: McGraw Hill 1953Google Scholar
  8. 8.
    Faraut, J.: Fonction brownienne sur une variétié riemannienne. Lecture Notes in Math. 321 Seminaire de Probabilités VII, ed. P.A. Meyer. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  9. 9.
    Faraut, J., Harzallah, K.: Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier 24, 171–217 (1974)Google Scholar
  10. 10.
    Gasper, G.: Linearization of the product of Jacobi polynomials, I, II, Canad. J. Math. 22, 171–175, 582–593 (1970)Google Scholar
  11. 11.
    Gangolli, R.: Isotropic infinitely-divisible measures on symmetric spaces. Acta Math. 111, 213–246 (1964)Google Scholar
  12. 12.
    Gangolli, R.: Positive definite functions on certain homogeneous spaces, and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B 3, 121–226 (1967)Google Scholar
  13. 13.
    Godement, R.: Introduction aux travaux de A. Selberg. Séminaire Bourbaki 144 (1957)Google Scholar
  14. 14.
    Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press 1962Google Scholar
  15. 15.
    Helgason, S.: The Radon transform for Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965)Google Scholar
  16. 16.
    Hunt, G.A.: Semigroups of measures on Lie groups. Trans. Amer. Math. Soc. 81, 294–319 (1956)Google Scholar
  17. 17.
    Lévy, P.: Processus Stochastiques et Mouvement Brownien. Paris: Gauthier-Villars 1947Google Scholar
  18. 18.
    Lévy, P.: Le mouvement brownien fonction d'un point de la sphere de Riemann. Rend. Circ. Mat. Palermo (2) 8, 297–310 (1959)Google Scholar
  19. 19.
    Parthasarathy, K. R.: Infinitely-divisible representations and positive definite functions on a compact group. Comm. Math. Phys. 16, 148–156 (1970)Google Scholar
  20. 20.
    Schmetterer, L. K.: Problems of group theory related to probability theory. Adv. Appl. Probab. 6, 209–210 (1974)Google Scholar
  21. 21.
    Schoenberg, I. J.: Metric spaces and positive-definite functions. Trans. Amer. Math. Soc. 44, 522–536 (1938)Google Scholar
  22. 22.
    Schoenberg, I. J.: Positive definite functions on spheres, Duke Math. J. 9, 96–108 (1942)Google Scholar
  23. 23.
    Schwartz, Alan: Generalized convolutions and positive definite functions associated with general orthogonal series. Pacific J. Math. 55, 565–582 (1974)Google Scholar
  24. 24.
    Tits, J.: Sur certains classes d'espaces homogènes de groupe de Lie. Acad. Roy Belg. Cl. Sci. Mém. Coll. 29, 3, 268pp. (1955)Google Scholar
  25. 25.
    Wang, H. C.: Two-point homogeneous spaces. Ann. Math. (2) 55, 177–191 (1952)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. Askey
    • 1
  • N. H. Bingham
    • 2
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA
  2. 2.Department of Mathematics, Westfield CollegeUniversity of LondonLondonEngland

Personalised recommendations