Ingenieur-Archiv

, Volume 59, Issue 1, pp 17–31 | Cite as

Ausbreitung transienter akustischer Wellen-Untersuchungen mit einer Zeitschritt-Randelementmethode

  • H. Antes
  • O. von Estorff
Hauptaufsätze

Übersicht

Unter Benutzung des Reziprozitätssatzes von Graffi wird eine zeitabhängige Integro-Differen-tialgleichung und daraus eine Zeitschritt-Randelementmethode hergeleitet. Sie ist bei beliebigen kompressiblen, nicht-viskosen Flüssigkeiten (akustischen Medien) anwendbar und besonders zur Ermittlung transienter Druckwellen in unendlichen oder halb-unendlichen Gebieten geeignet. Als Anwendung wird das Staudammproblem, dabei vor allem der Einfluß der Topographie und der dynamischen Interaktion mit dem Untergrund untersucht.

Propagation of transient acoustic waves — An analysis by a time-stepping boundary element method

Summary

By using Graffi's reciprocal theorem a time-dependent integro-differential equation and therefrom a time step boundary element method is derived. It is applicable to arbitrary compressible but non-viscous fluids (acoustic media), especially suitable for determining transient pressure waves in infinite or semi-infinite domains. As an application of the method, a reservoir-dam system is analyzed, especially considering the influence of the topography and of the dynamic interaction with the soil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Westergaard, H. M.: Water pressure on dams during earthquake. Transactions ASCE 98 (1933) 418–433Google Scholar
  2. 2.
    Chopra, A. K.: Earthquake behaviour of reservoir-dam systems. J. Eng. Mech. Div. ASCE 94 (1968) 1475–1499Google Scholar
  3. 3.
    Chopra, A. K.; Hall, J. F.: Hydrodynamic effects in the dynamic response of concrete gravity dams. Earthquake Eng. Struct. Dyn. 10 (1982) 333–345Google Scholar
  4. 4.
    Antes, H.: A boundary element procedure for transient wave propagation in two-dimensional isotropic elastic media. Finite Elem. Anal. Des. 1 (1985) 313–322Google Scholar
  5. 5.
    Antes, H.; von Estorff, O.: Dynamic response analysis of rigid foundations and of elastic structures by boundary element procedures. Erscheint in: Soil Dyn. Earthquake Eng. (1989)Google Scholar
  6. 6.
    Antes, H.; von Estorff, O.: Erschütterungsausbreitung im Boden und dynamische Interaktionseffekte — Untersuchungen mit einer Randelementmethode im Zeitbereich. Bauingenieur 62 (1985) 201–208Google Scholar
  7. 7.
    Venturini, W. S.: Boundary element method in geomechanics. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  8. 8.
    Wolf, J. P.: Dynamic soil-structure interaction. Englewood Cliffs, N.J.: Prentice-Hall 1985Google Scholar
  9. 9.
    Bausinger, R.; Kuhn, G. u. a.: Die Boundary-Element-Methode. Expert 1987Google Scholar
  10. 10.
    Cruse, T. A.; Rizzo, F. J.: Direct formulation and numerical solution of the general transient elastodynamic problem. J. Math. Anal. Appl. 22 (1968) 244–259Google Scholar
  11. 11.
    Niwa, Y.; Kobashi, S.; Fukui, T.: Application of integral equation method to some geomechanical problems. In: Desai, C. S. (ed.) Numerical methods in geomechanics, pp. 120–131. New York: ASCE 1976Google Scholar
  12. 12.
    Manolis, G. D.; Beskos, D. E.: Dynamic stress concentration studies by boundary integrals and Laplace transforms. Int. J. Numer. Methods Eng. 17 (1981) 573–599Google Scholar
  13. 13.
    Hanna, Y. G.; Humar, J. L.: Boundary element analysis of fluid domain J. Eng. Mech. Div. 108 (1982) 436–450Google Scholar
  14. 14.
    Kakuda, K.; Tosaka, N.: Numerical analysis of coupled fluid-elasticity systems using the boundary element method. In: Brebbia, C. A.; Futagami, T.; Tanaka, M. (eds.) Proc. 5th Int. Conf., Hiroshima, Japan, pp. 1005–1016. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  15. 15.
    Antes, H.: A multiple grid boundary element procedure for the 2-D Helmholtz equation. In: Whiteman J. R. (ed.) Proc. 6th MAFELAP Conf., Brunel Univ., U.K., pp. 413–421. New York: Academic Press 1988Google Scholar
  16. 16.
    Spyrakos, C. C.; Beskos, D. E.: Dynamic response of rigid strip foundations by time domain boundary element method. Int. J. Numer. Methods. Eng. 23 (1985) 1547–1565Google Scholar
  17. 17.
    Spyrakos, C. C.; Antes, H.: Time domain boundary element method approaches in elastodynamics: A comparative study. Comput. Struct. 24 (1986) 529–535Google Scholar
  18. 18.
    Mansur, W. J.: A time-stepping technique to solve wave propagation problems using the boundary element method. Ph. D. Thesis, Southampton University 1983Google Scholar
  19. 19.
    Antes, H.; von Estorff, O.: Analysis of absorption effects on the dynamic response of dam reservoir systems by boundary element methods. Earthquake Eng. Struct. Dyn. 15 (1987) 1023–1036Google Scholar
  20. 20.
    Antes, H.: Time domain boundary element solutions of hyperbolic equations for 2-D transient wave propagation. In: Proc. 3. GAMM-Seminar: Panel methods in fluid mechanics with emphasis in aerodynamics Kiel, pp. 35–42. Braunschweig: Vieweg 1987Google Scholar
  21. 21.
    Antes, H.; von Estorff, O.; Steinfeld, B.: FLUBEM — Ein Randelementprogramm zur Berechnung des Zeitverlaufs der Druckwellenausbreitung in kompressiblen Flüssigkeiten. SFB 151-Berichte Nr. 7, Ruhr Universität Bochum 1988Google Scholar
  22. 22.
    Antes, H.: Anwendungen der Methode der Randelemente in der Elastodynamik und in der Fluiddynamik. Mathematische Methoden in der Technik, Bd. 9 Stuttgart: Teubner 1988Google Scholar
  23. 23.
    Graffi, D.: Über den Reziprozitätssatz in der Dynamik elastischer Körper. Ing. Arch. 22 (1954) 45–46Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. Antes
    • 1
  • O. von Estorff
    • 2
  1. 1.Institut für Angewandte MechanikTechnische Universität BraunschweigBraunschweigDundesrepublik Deutschland
  2. 2.Sonderforschungsbereich 151 Ruhr-Universität BochumBochum 1Bundesrepublik Deutschland

Personalised recommendations