Random evolutions on diffusion processes

  • Donald Quiring


Stochastic Process Probability Theory Diffusion Process Mathematical Biology Random Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breiman, Leo: Probability. Reading, Mass.: Addison-Wesley 1968.Google Scholar
  2. 2.
    Dynkin, E.B.: Markov Processes. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  3. 3.
    Griego, R.J.. and R. Hersh: Markov Chains and Systems of Partial Differential Equations. Proc. nat. Acad. Sci. USA 62, 305–308 (1969).Google Scholar
  4. 4.
    Heath, David C.: Probabilistic Analysis of Certain Hyperbolic Systems of Partial Differential Equations, Dissertation. Univ. of Illinois, 1969.Google Scholar
  5. 5.
    Hersh, R. and R. Griego: Random Evolutions-Theory and Applications. Technical Report 180. Department of Mathematics and Statistics, University of New Mexico, 1969.Google Scholar
  6. 6.
    Hille, E. and R. Phillips: Functional Analysis and Semigroups. Providence, R.I.: Amer. math. Soc. Colloquium Publications, 1957.Google Scholar
  7. 7.
    Ito, K. and H.P. McKean: Diffusion Processes and their Sample Paths. New York: Academic Press 1965.Google Scholar
  8. 8.
    Kac, M.: Some Stochastic Problems in Physics and Mathematics, Magnolia Petroleum Co. Lectures in Pure and Applied Science 2 (1956).Google Scholar
  9. 9.
    Pinsky, M.: Differential Equations with a Small Parameter and the Central Limit Theorem for Functions Defined on a Finite Markov Chain. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 101–111 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Donald Quiring
    • 1
  1. 1.Department of MathematicsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations