Random evolutions on diffusion processes

  • Donald Quiring


Stochastic Process Probability Theory Diffusion Process Mathematical Biology Random Evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breiman, Leo: Probability. Reading, Mass.: Addison-Wesley 1968.Google Scholar
  2. 2.
    Dynkin, E.B.: Markov Processes. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  3. 3.
    Griego, R.J.. and R. Hersh: Markov Chains and Systems of Partial Differential Equations. Proc. nat. Acad. Sci. USA 62, 305–308 (1969).Google Scholar
  4. 4.
    Heath, David C.: Probabilistic Analysis of Certain Hyperbolic Systems of Partial Differential Equations, Dissertation. Univ. of Illinois, 1969.Google Scholar
  5. 5.
    Hersh, R. and R. Griego: Random Evolutions-Theory and Applications. Technical Report 180. Department of Mathematics and Statistics, University of New Mexico, 1969.Google Scholar
  6. 6.
    Hille, E. and R. Phillips: Functional Analysis and Semigroups. Providence, R.I.: Amer. math. Soc. Colloquium Publications, 1957.Google Scholar
  7. 7.
    Ito, K. and H.P. McKean: Diffusion Processes and their Sample Paths. New York: Academic Press 1965.Google Scholar
  8. 8.
    Kac, M.: Some Stochastic Problems in Physics and Mathematics, Magnolia Petroleum Co. Lectures in Pure and Applied Science 2 (1956).Google Scholar
  9. 9.
    Pinsky, M.: Differential Equations with a Small Parameter and the Central Limit Theorem for Functions Defined on a Finite Markov Chain. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 101–111 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Donald Quiring
    • 1
  1. 1.Department of MathematicsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations