Parasitology Research

, Volume 73, Issue 2, pp 151–158 | Cite as

The concept of specificity in the procercoid-copepod system: Bothriocephalus claviceps (Cestoda) a parasite of the eel (Anguilla anguilla)

  • F. Dupont
  • C. Gabrion
Original Investigations

Abstract

This paper describes experimental work on parasite specificity in the copepod-procercoid system of Bothriocephalus claviceps. Two criteria were used to characterize five potential host species Macrocyclops albidus, Macrocyclops fuscus, Eucyclops serrulatus, Acanthocyclops robustus and Macrocyclops viridis viridis. The first criterion involves susceptibility of the copepods to infection. The results show random or aggregative distributions and variable susceptibilities according to the species. We observed an ethological barrier to infection in M. viridis viridis and M. fuscus. The second criterion involves the growth and development of the procercoid. Three factors modify the profiles of the growth curves: host species, sex and intensity of infection. The growth of the procercoids is density-dependent, whereas their development is independent of density.

This last characteristic is interpreted as a factor favouring the aggregation of procercoid populations. The two most susceptible hosts are M. albidus and A. robustus.

Keywords

Experimental Work Growth Curve Host Species Susceptible Host Variable Susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke AS (1953) Studies on the life cycle of the Pseudophyllidean Cestode Schistocephalus solidus. Proc Zool Soc Lond 124:257–302Google Scholar
  2. Dupont F (1984) Biologie des populations de Bothriocephalus claviceps Cestode Pseudophyllidea parasite de l'Anguille européenne. Thèse de 3ℴ cycle, USTL, 199 ppGoogle Scholar
  3. Dupont F, Gabrion C (1986) Dynamique de populations de Bothriocephalus claviceps (Cestoda, Pseudophyllidea), parasite de l'Anguille Anguilla anguilla en Camargue. Vie Milieu (in press)Google Scholar
  4. Elliott JM (1983) Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association, Scientific Publication nℴ 25: 156 ppGoogle Scholar
  5. Guttowa A (1956) Prove (sic) of experimental definition of the main first intermediate hosts of broad fish tapeworm Diphyllobothrium latum (L.) in the area of Poland. Acta Parasitol Pol 4:781–802Google Scholar
  6. Guttowa A (1961a) Experimental investigations on the systems “procercoids of Diphyllobothrium latum (L.) — Copepoda”. Acta Parasitol Pol 9:371–408Google Scholar
  7. Guttowa A (1961b) Potential intermediate host (Copepoda) of the broad tapeworm of man Diphyllobothrium latum (L.) in Norway. Nytt Mag Zool 10:57–62Google Scholar
  8. Halvorsen O (1966) Studies of the helminth fauna of Norway VIII: an experimental investigation of copepods as first intermediate hosts for Diphyllobothrium norvegicum Vik (Cestoda). Nytt Mag Zool 13:83–117Google Scholar
  9. Halvorsen O (1976) Negative interaction amongst parasites in Ecological Aspects of Parasitology. North-Holland Publishing Company, Kennedy CR (ed), Amsterdam, Oxford, pp 99–114Google Scholar
  10. Jarecka L (1959) On the life-cycle of Bothriocephalus claviceps (Goeze 1782). Acta Parasitol Pol 7:527–533Google Scholar
  11. Jarecka L (1964) Cycle évolutif à un seul hÔte intermédiaire chez Bothriocephalus claviceps (Goeze 1782) Cestode de Anguilla anguilla (L.). Annls Parasit Hum Comp 30:149–156Google Scholar
  12. Jarroll EL (1979) Population biology of Bothriocephalus rarus Thomas (1937) in the red-spotted newt, Notophthalmus viridescens Rat. Parasitology 79:183–193Google Scholar
  13. Meyer MC, Vik R (1963) The life cycle of Diphyllobothrium sebago (Ward 1910). J Parasitol 49:962–968Google Scholar
  14. Michajlow W (1932) Les adaptations graduelles des Copépodes comme premiers hÔtes intermédiaires de Triaenophorus nodulosus Pall. Ann Parasit Hum Comp 10:334–344Google Scholar
  15. Michajlow W (1953) The intraspecies relationships in the procercoid populations of Triaenophorus lucii (Müll). Acta Parasitol Pol 1:2–28Google Scholar
  16. Michajlow W (1963) Results of experimental infecting of Copepoda from Hansersee (Switzerland) with the larvae of Diphyllobothrium latum (L.) (Cestoda). Bull Ac Pol Sci 11:347–351Google Scholar
  17. Miller RB (1943) Studies on cestodes of the genus Triaenophorus from fish of Lesser Slave Lake, Alberta. II. The eggs, coracidia and life in the first intermediate host of Triaenophorus crassus Ford and T. nodulosus (Pallas). Can J Res D 21:284–291Google Scholar
  18. Rosen F (1918) Recherches sur le développement des Cestodes. I. Le cycle évolutif des Bothriocéphales. Essai sur l'origine des Cestodes et leurs états larvaires. Bull Soc Neuchateloise Sc Nat 43:1–64Google Scholar
  19. Rosen R, Dick TA (1983) Development and infectivity of the procercoid of Triaenophorus crassus Forel. and mortality of the first intermediate host. Can J Zool 61:2120–2128Google Scholar
  20. Thomas LJ (1937) Environmental relations and life history of the tapeworm Bothriocephalus rarus (Thomas 1937). J Parasitol 23:133–152Google Scholar
  21. Watson NHF, Lawler CH (1965) Natural infections of Cyclopoid copepods with procercoids of Triaenophorus spp. J Fish Res Bd Canada 22:1335–1343Google Scholar
  22. Watson NHF, Price JL (1960) Experimental infections of Cyclopoid copepods with Triaenophorus crassus Ford. and T. nodulosus (Pallas). Can J Zool 38:345–356Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • F. Dupont
    • 1
  • C. Gabrion
    • 2
  1. 1.Laboratoire de Parasitologie Comparée (Laboratory of Comparative Parasitology)University of Montpellier IIMontpellier CédexFrance
  2. 2.Laboratoire de Parasitologie ComparéeUniversité des Sciences et Techniques du LanguedocMontpellier CedexFrance

Personalised recommendations