Skip to main content
Log in

The sarcoplasmic calcium pump — A most efficient ion translocating system

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

In contrast to the sodium-potassium transporting plasma membranes, the sarcoplasmic membranes (SR) are highly specialized structures into which only two major intrinsic proteins, a calcium transporting protein and a calcium binding protein are embedded. The calcium transporting protein is a highly asymmetric molecule. It binds two calcium ions with a very high affinity at its external, and two calcium ions with low affinity at the internal section of the molecule. ATP is bound with high affinity to an external binding site, inducing a conformational change. When the vesicular membranes are exposed to solutions containing Ca++, Mg++ and ATP, ATP is hydrolyzed and simultaneously calcium ions are translocated from the external medium into the vesicular space. When calcium ions are translocated in the opposite direction, ATP is synthesized. The calcium-ATP ratio for ATP cleavage as well as for ATP synthesis is 2. Thus, the SR membranes can transform reversibly chemical into osmotical energy. Inward and outward movements of calcium ions are relatively slow processes connected with the appearance and disappearance of different phosphorylated intermediates. One phosphorylated intermediate is formed by phosphoryltransfer from ATP when calcium ions are present in the medium. In contrast, when calcium ions are absent from the external medium, two different intermediates can be formed by the incorporation of inorganic phosphate. Only when calcium ions present in the internal space of the vesicles are released, the incorporation of inorganic phosphate gives rise to an intermediate whose phosphoryl group can be transferred to ADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzer, H., Makinose, M., Hasselbach, W.: The inhibition of the sarcoplasmic calcium pump by Prenylamine, Reserpine, Chlorpromazine and Imipramine. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 444–455 (1968)

    Google Scholar 

  2. Barlogie, B., Hasselbach, W., Makinose, M.: Activation of calcium efflux by ADP and inorganic phosphate. FEBS Lett. 12, 267–268 (1971)

    Google Scholar 

  3. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., Steinhardt, P. A.: The influence of calcium on sodium efflux in squid axons. J. Physiol. (Lond.) 200, 431–458 (1969)

    Google Scholar 

  4. Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., Shaw, T. I.: The effects of injecting energy-rich phosphate compounds on active transport of ions in the giant axous of loligo. J. Physiol. (Lond.) 152, 561–590 (1960)

    Google Scholar 

  5. Dunham, E. T., Glynn, I. M.: Adenosine triphosphatase activity and the active movements of alcali metal ions. J. Physiol. (Lond.) 156, 274–293 (1961)

    Google Scholar 

  6. Ebashi, S., Lipmann, W.: Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. cell. Biol. 14, 389–400 (1962)

    Google Scholar 

  7. Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. Biophys. 18, 125–183 (1968)

    Google Scholar 

  8. Fiehn, W., Migala, A.: Calcium binding to sarcoplasmic membranes. Europ. J. Biochem. 20, 245–248 (1971)

    Google Scholar 

  9. Fiehn, W., Hasselbach, W.: The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles. Europ. J. Biochem. 13, 510–518 (1970)

    Google Scholar 

  10. Froehlich, J. P., Taylor, E. W.: Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase. J. biol. Chem. 250, 2913–2013 (1975)

    Google Scholar 

  11. Gilbert, D. L., Fenn, W. O.: Calcium equilibrium in muscle. J. gen. Physiol. 40, 393–408 (1957)

    Google Scholar 

  12. Glynn, J. M., Karlish, S. J. B.: The sodium pump. Ann. Rev. Physiol. 37, 13–55 (1975)

    Google Scholar 

  13. Harris, J. E.: The influence of the metabolism of human erythrocytes on their potassium content. J. biol. Chem. 141, 579–595 (1941)

    Google Scholar 

  14. Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Proc. Soc. exp. Biol. (N.Y.) 23, 309–312 (1964)

    Google Scholar 

  15. Hasselbach, W.: The sarcoplasmic calcium pump. In: Molecular bioenergetics and macromolecular biochemistry, Meyerhof Symp. 1970, pp. 149–171. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  16. Hasselbach, W.: Sarcoplasmic membrane ATPase. In: The enzymes X, pp. 431–467. New York: Academic Press 1974

    Google Scholar 

  17. Hasselbach, W.: Release and uptake of calcium by the sarcoplasmic reticulum. 26. Colloq. Mosbach, pp. 81–92. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  18. Hasselbach, W., Makinose, M.: Die Calciumpumpe der „Erschlaffungsgrana“ des Muskels und ihre AbhÄngigkeit von der ATP-Spaltung. Biochem. Z. 333, 518–528 (1961)

    Google Scholar 

  19. Hasselbach, W., Makinose, M.: ATP and active transport. Biochem. biophys. Res. Commun. 7, 132–136 (1962)

    Google Scholar 

  20. Hasselbach, W., Suko, J.: Calcium and phosphate turnover in the sarcoplasmic membranes. Biochem. Soc. Spec. Publ. 4, 159–173 (1974)

    Google Scholar 

  21. Hokin, L. E.: Reconstitution of the coupled transports of Na+ and K+ in vesicles containing the purified NaK ATPase from the rectal gland of squalus acanthias. FEBS Symp. on Biochemistry of Membrane Transport, Zurich (in press) (1976)

  22. Ikemoto, N., Bhatnagar, G. M., Gergely, J.: Fractionation of solubilized sarcoplasmic reticulum. Biophys. Res. Comm. 44, 1510–1517 (1971)

    Google Scholar 

  23. Ikemoto, N.: Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J. Biochem. (Tokyo) 249, 659–651 (1974)

    Google Scholar 

  24. JØrgensen, P. L.: Purification and characterisation of (Na++K+)-ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by SDS. Biochim. biophys. Acta (Amst.) 356, 36–52 (1974)

    Google Scholar 

  25. Kanazawa, T.: Phosphorylation of solubilized sarcoplasmic reticulum by orthophosphate and its thermodynamic characteristics. J. biol. Chem. 250, 113–119 (1975)

    Google Scholar 

  26. Knowles, A. P., Racker, E.: Properties of a reconstituted calcium pump. J. biol. Chem. 250, 1949–1951 (1975)

    Google Scholar 

  27. Krogh, A.: The active absorption of ions in some freshwater animals. Z. vergl. Physiol. 25, 335–356 (1938)

    Google Scholar 

  28. Maclennan, D. H., Wong, P. T. S.: Isolation of the calcium sequestering protein from sarcoplasmic reticulum. Proc. nat. Acad. Sci. (Wash.) 68, 1231–1235 (1971)

    Google Scholar 

  29. Makinose, M., Hasselbach, W.: Der Einflu\ von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Retikulum. Biochem. Z. 343, 360–382 (1965)

    Google Scholar 

  30. Makinose, M.: Die Phosphorylierung der Membran des sarkoplasmatischen Retikulum unter den Bedingungen des aktiven Ca-Transportes. Proc. Int. Biophys. Congr. 2nd, Vienna, N. 276, Wiener UniversitÄtsverlag 1966

  31. Makinose, M.: The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport. Europ. J. Biochem. 10, 74–83 (1969)

    Google Scholar 

  32. Makinose, M., Hasselbach, W.: ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett. 12, 271 (1971)

    Google Scholar 

  33. Masuda, H., de Meis, L.: Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions. Biochemistry 12, 4581–4585 (1973)

    Google Scholar 

  34. Meissner, G.: ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum. Biochim. biophys. Acta (Amst.) 298, 906–926 (1973)

    Google Scholar 

  35. Post, R.: Titration of sodium against potassium by the action on (Na+, K+) ATPase. FEBS Symp. on Biochemistry of Membrane Transport, Zürich (in press) (1976)

  36. Reuter, H.: Divalent cat ions as charge carrier in excitable membranes. Progr. Biophys. 26, 1–43 (1972)

    Google Scholar 

  37. Scarpa, A., Baldassare, J., Inesi, G.: The effect of calcium ionophores on fragmented sarcoplasmic reticulum. J. gen. Physiol. 60, 735–749 (1972)

    Google Scholar 

  38. Schatzmann, H. J.: Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J. Physiol. (Lond.) 235, 551–569 (1973)

    Google Scholar 

  39. Skou, J. C.: Relationship of a (Mg2++Na+)-activity, K+-stimulated enzyme or enzyme system to the active, linked transport of Na+ and K+ across the cell membrane. 1960

  40. Stromer, M., Hasselbach, W.: Fusion of isolated sarcoplasmic reticulum membranes. Z. Naturforsch. 31c, 703–707 (1976)

    Google Scholar 

  41. The, R., Hasselbach, W.: Unsaturated fatty acids as reactivators of the calcium-dependent ATPase of delipidated sarcoplasmic membranes. Europ. J. Biochem. 39, 63–68 (1973)

    Google Scholar 

  42. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., Metcalfe, J. C.: Reconstitution of a calcium pump using defined membrane components. Biochemistry 13, 5501–5507 (1974)

    Google Scholar 

  43. Whittam, R., Ager, M. E.: The connection between active cat ion transport metabolism in erythrocytes. Biochem. J. 97, 214–227 (1965)

    Google Scholar 

  44. Whittam, R., Chipperfield, A. R.: The reaction mechanism of the sodium pump. Biochim. biophys. Acta (Amst.) 415, 149–171 (1975)s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasselbach, W. The sarcoplasmic calcium pump — A most efficient ion translocating system. Biophys. Struct. Mechanism 3, 43–54 (1977). https://doi.org/10.1007/BF00536453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00536453

Key words

Navigation