Biophysics of structure and mechanism

, Volume 3, Issue 1, pp 31–38 | Cite as

A proposed model for rhodopsin in photoreceptor membranes

  • A. Kent Wright
Article
  • 27 Downloads

Abstract

Transient electric birefringence studies have been made on bovine rhodopsin solubilized in the detergent lauryldimethylamine oxide from glutaraldehyde fixed rod outer segment (ROS) membranes. It was found that fixation caused no appreciable differences in the measured relaxation times when compared with unfixed ROS. On the basis of these findings a model for the orientation of rhodopsin in photoreceptor membranes is proposed which accounts for translational diffusion and two modes of rotational diffusion. The proposed model is related to a number of experimentally determined biophysical properties reported in the literature.

Key words

Rhodopsin Glutaraldehyde fixation Transient birefringence Diffusion Photoreceptor Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, M., Blosse, P. T., Dewhurst, P. B.: The active site of the visual protein, rhodopsin. Chem. Comm. 13, 631–632 (1967)Google Scholar
  2. Arden, G. B., Bridges, C. D. B., Ikeda, H., Siegel, I. M.: Mode of generation of the early receptor potential. Vision Res. 8, 3–24 (1968)Google Scholar
  3. Applebury, M. L., Zuckerman, D. M., Lamola, A. A., Jovin, T. M.: Rhodopsin. Purification and recombinaton with phospholipids assayed by the metarhodopsin I. Metarhodopsin II transition. Biochemistry 13, 3448–3458 (1974)Google Scholar
  4. Blauer, G., Harmatz, D., Meir, E., Swenson, M. K., Zvilichovsky, B.: The interaction of glutaraldehyde with poly(α, l-lysine), n-butylamine, and collagen. I. The primary proton release in aqueous medium. Biopolymers 14, 2585–2598 (1975)Google Scholar
  5. Brown, P. K.: Rhodopsin rotates in the visual receptor membrane. Nature (Lond.) New Biol. 236, 35–38 (1972)Google Scholar
  6. Cone, R. A.: Relaxation times of rhodopsin detected by photodichroism. Biophys. J. 11, 246a (1971)Google Scholar
  7. Cone, R. A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature (Lond.) New Biol. 236, 39–43 (1972)Google Scholar
  8. Daemen, F. J. M.: Vertebrate rod outer segment membranes. Biochim. biophys. Acta (Amst.) 300, 255–288 (1973)Google Scholar
  9. De Vries, H.: The luminosity curve of the eye as determined by measurements with the Flicker-photometer. Physica 14, 319–348 (1948)Google Scholar
  10. Goldsmith, T. H.: Comparative animal physiology, 3rd ed. (ed. C. Ladd Presser), pp. 612–613. Philadelphia: W. B. Saunders Co. 1973Google Scholar
  11. Goldsmith, T. H., Wehner, R.: Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. Biophys. J. 16, 107a (1976)Google Scholar
  12. Goldsmith, T. H., Wehner, R.: Restricted rotational and translational diffusion of pigment in rhabdomeric photoreceptor membranes, p. 86. The Association for Research in Vision and Ophthalmology, Spring Meeting, 1976Google Scholar
  13. Gribakin, F. G., Govardovskii, V. I.: The role of the photoreceptor membrane in photoreceptor optics. In: Photoreceptor optics, Chapt. B 2 (ed. A. W. Synder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975Google Scholar
  14. Hagins, W. A., Jennings, W. H.: Radiationless migration of electronic excitation in retinal rods. Discuss. Faraday Soc. 27, 180–190 (1959)Google Scholar
  15. Hagins, W. A., McGaughy, R. E.: Molecular and thermal origins of fast photoelectric effects in the squid retina. Science 157, 813–816 (1967)Google Scholar
  16. Hall, M. O., Nir, I.: The ultrastructure of lipid-depleted photoreceptor disc membranes, p. 34. The Association for Research in Vision and Ophthalmology, Spring Meeting, 1974sGoogle Scholar
  17. Lewis, M. S., Krieg, L. C., Kirk, W. D.: The molecular weight and detergent binding of bovine rhodopsin. Exp. Eye Res. 18, 29–40 (1974)Google Scholar
  18. Liebman, P. A.: Microspectrophotometry of photoreceptors. In: Handbook of sensory physiology, vol. VII/1, Chapt. 12 (ed. H. J. A. Dartnall). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  19. Liebman, P. A.: Birefringence, dichroism and rod outer segment structure. In: Photoreceptor optics, Chapt. B 1 (ed. A. W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975Google Scholar
  20. Pak, W. L., Helmrich, H. G.: Absence of photodichroism in the retinal receptors. Vision Res. 8, 585–589 (1968)Google Scholar
  21. Peterson, D. C., Cone, R. A.: The electric dipole moment of rhodopsin. Biophys. J. 15, 1181 (1975)Google Scholar
  22. Poo, M., Cone, R. A.: Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (Lond.) 247, 438–441 (1974)Google Scholar
  23. Sperling, W., Rafferty, C. N.: Relationships between absorption spectrum and molecular conformations of 11-cis retinal. Nature (Lond.) 224, 591–594 (1969)Google Scholar
  24. Steinemann, A., Stryer, L.: Accessibility of the carbohydrate moiety of rhodopsin. Biochemistry 12, 1499–1502 (1973)Google Scholar
  25. Strackee, L.: Rotational diffusion of rhodopsin-digitonin micelles studied by transient photodichroism. Biophys. J. 11, 728–738 (1971)Google Scholar
  26. Swenson, M. K., Meir, E., Yanai, P., Zvilichovsky, B., Blauer, G.: The interaction of glutaraldehyde with poly(α, l-lysine), n-butylamine, and collagen. II. Hydrodynamic, electron microscopic, and optic investigations on the reaction products. Biopolymers 14, 2599–2612 (1975)Google Scholar
  27. Tao, T.: Rotational mobility of a fluorescent rhodopsin derivative in the rod outer-segment membrane. Biochem. J. 122, 54 (1971)Google Scholar
  28. von Frisch, K.: The dance language and orientation of bees. Cambridge: Harvard University Press 1967Google Scholar
  29. Williams, R. C., Ham, W. T., Wright, A. K.: Ultra high speed electro-optical system for transient birefringence studies of macromolecules in solution. Analyt. Biochem. 73, 52–64 (1976)Google Scholar
  30. Wright, A. K., Duncan, R. C., Beekman, K. A.: A numerical inversion of the perrin equations for rotational diffusion constants for ellipsoids of revolution by iterative techniques. Biophys. J. 13, 795–803 (1973)Google Scholar
  31. Wright, A. K.: Ellipsoid models for rotational diffusion of rhodopsin in a digitonin micelle and in the visual receptor membrane. Biophys. J. 4, 243–245 (1974)Google Scholar
  32. Wright, A. K., Thompson, M. R.: Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys. J. 15, 137–141 (1975)Google Scholar
  33. Wright, A. K.: A study of rhodopsin-detergent micelles by transient electric birefringence. Biophys. Chem. 4, 199–202 (1976)Google Scholar
  34. Wright, W. E., Brown, P. K., Wald, G.: The orientation of rhodopsin and other pigments in dry films. J. gen. Physiol. 59, 201–212 (1972)Google Scholar
  35. Wright, W. E., Brown, P. K., Wald, G.: Orientation of intermediates in the bleaching of shear-oriented rhodopsin. J. gen. Physiol. 62, 509–522 (1973)Google Scholar
  36. Wu, C. W., Stryer, L.: Proximity relationships in rhodopsin. Proc. Nat. Acad. Sci. (Wash.) 69, 1104–1108 (1972)Google Scholar
  37. Yeager, M.: Shape of rhodopsin investigated by neutron scattering. Fed. Proc. 13, 583 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Kent Wright
    • 1
  1. 1.Department of BiochemistryUniversity of Tennessee Center for the Health SciencesMemphisUSA

Personalised recommendations