, Volume 55, Issue 3, pp 213–220 | Cite as

Yield surface description of isotropic materials after cold prestrain

  • P. Mazilu
  • A. Meyers


A new procedure for the determination of the yield loci of prestressed materials is suggested. This procedure is based on the hypothesis of different isotropy center translations of the two stress deviator invariants. It also is based on the assumption that the yield loci equations are expressed by means of functions defined over the stress space which depend a) on the values of the translated invariants, calculated for the given stress tensor, and b) on the orientation in the stress space of the plane defined by the preloading tensor and the given stress tensor.


Neural Network Complex System Information Theory Stress Tensor Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Beschreibung der Fließgrenze vorgedehnten Materials


Zur Beschreibung der Fließkurve vorgedehnten Materials wird ein Gesetz vorgeschlagen, welches auf der Annahme unterschiedlicher Verschiebungen der Isotropiezentren der beiden Invarianten des Spannungs deviators basiert. Darüber hinaus wird die Fließkurvengleichung vom Deviator der Vorspannung und der Orientierung von Vorspannung und aktueller Spannung bestimmt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edelman, F.; Drucker, D. C.: Some extensions to elementary plasticity theory. J. Franklin Inst. 251 (1951) 581–605Google Scholar
  2. 2.
    Shahabi, S. N.; Shelton, A.: The anisotropic yield flow and creep behaviour of prestrained En24-steel. J. Mech. Eng. Sci. 17 (1975) 82–92Google Scholar
  3. 3.
    Shiratori, E.; Ikegami, K.; Kaneko, K.: Subsequent yield surface determined in consideration of the Bauschinger effect. In Foundation of Plasticity. Leiden: Nordhoff Int. Publ. 1973Google Scholar
  4. 4.
    Ikegami, K.: Experimental plasticity on the anisotropy of metals. Colloques internationaux du CNRS No. 295 - Comportement mécanique des solides anisotropes, Coll. 115, Villard de Lans 1979, (ed. J.-P. Boehler) Ed. CNRS Paris (1982) 201–242Google Scholar
  5. 5.
    Haythornwaite, R. M.: A more rational approach to strain-hardening data. In Engineering Plasticity, Ed. J. Heyman and E. A. Leckie. Cambridge at the University Press 1968Google Scholar
  6. 6.
    Gupta, N. K.; Lauert, H.-A.: A study of yield surface upon reversal of loading under biaxial stress. To be publ. in ZAMMGoogle Scholar
  7. 7.
    Rees, D. W. A.: The theory of scalar plastic deformation functions. ZAMM 63 (1983) 217–228Google Scholar
  8. 8.
    Phillips, A.; Tang, J. L.: The effect of loading path on the yield surface at elevated temperatures. Int. J. Solids Struct. 8 (1972) 463–474Google Scholar
  9. 9.
    Sayir, M.: Zur Fließbedingung der Plastizitätstheorie. Ing. Arch. 39 (1970) 414–432Google Scholar
  10. 10.
    Lehmann, Th.: Zu einigen nicht-linearen Stoffgesetzen für plastische Formänderungen. Rheol. Acta 11 (1972) 4–12Google Scholar
  11. 11.
    Betten, J.: Plastische Anisotropie und Bauschinger-Effekt; allgemeine Formulierung und Vergleich mit experimentell ermittelten Fließortkurven. Acta Mech. 25 (1976) 79–84Google Scholar
  12. 12.
    Betten, J.: Über die Konvexität von Fließkörpern isotroper und anisotroper Stoffe. Acta Mech. 32 (1979) 233–247Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Mazilu
    • 1
  • A. Meyers
    • 1
  1. 1.Lehrstuhl für Mechanik IRuhruniversität BochumBochum 1Bundesrepublik Deutschland

Personalised recommendations