Skip to main content
Log in

Monooxygenase activity of metalloporphyrins and mechanism of activation of molecular oxygen

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

Reaction rate constants have been measured for the oxidation of cholesterol by atmospheric oxygen in the presence of tetra-meso-substituted metalloporphyrins [MP] (M = Ni, Cr, Mn, Fe, Co). The results have been interpreted by the use of data on the structure of metal complexes and reaction mechanisms. It has been established that the reaction proceeds at a high rate when the oxygen in the composition of the intermediate complex [MO2P] is in the singlet spin state. The singlet state of O2 is occupied in the case in wich the metal ion in the porphyrin complex is in a high-spin state. The spin state and related catalytic activity of the metalloporphyrin is regulated by meso-substituents in the porphine ring. The influence of meso-substituents is predicted theoretically within the framework of a generalized orienting effect, the presence of which is supported by an analysis of 13C NMR data for meso-substituted metalloporphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. I. Archakov, Oxygenase of Biological Membranes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  2. I. Tabushi and N. Koga, “P-450 type oxygen activation by porphyrin-manganese complex,” J. Am. Chem. Soc., 101, No. 21, 6456–6458 (1979).

    Google Scholar 

  3. M. Perée-Fauvet and A. Gaudemer, “Manganese porphyrin catalyzed oxidation of olefins to ketones by molecular oxygen,” J. Chem. Soc., Chem. Commun., No. 17, 874–875 (1981).

    Google Scholar 

  4. A. B. Solov'eva, E. I. Karakozova, K. A. Bogdanova, et al., “Oxidation of substituted olefins by molecular oxygen activated by tetraphenylporphyrin complex (TPP) of bivalent manganese,” Dokl. Akad. Nauk SSSR, 269, No. l, 160–162 (1983).

    Google Scholar 

  5. A. B. Solov'eva, V. I. Mel'nikova, K. A. Pivnitskii, et al., “Direction of oxidation of substituted olefins by molecular oxygen activated by porphyrin complex of bivalent manganese,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2327–2333 (1983).

    Google Scholar 

  6. A. B. Solov'eva, A. I. Samokhvalova, E. I. Karakozova, et al., “Kinetics of 1-hexene oxidation by molecular oxygen in the presence of the system TPPMnCl + NaBH4,” Kinet. Katal., 25, No. 5, 1080–1084 (1984).

    Google Scholar 

  7. L. J. Boucher and H. K. Garber, “Manganese porphyrin complexes. 4. Reduction of manganese porphyrins,” Inorg. Chem., 9, No. 12, 2644–2649 (1970).

    Google Scholar 

  8. B. Hoffman, C. Weschler, and F. Basolo, “The dioxygen adduct of meso-tetraphenylpor-phyrinmanganese(II), a synthetic oxygen carrier,” J. Am. Chem. Soc., 98, No. 18, 5473–5482 (1976).

    Google Scholar 

  9. R. D. Jones, D. A. Summerville, and F. Basolo, “Synthetic oxygen carriers related to biological systems,” Chem. Rev., 79, No. 2, 139–179 (1979).

    Google Scholar 

  10. B. M. Hoffman, T. Szymanski, T. G. Brown, and F. Basolo, “The dioxygen adducts of several manganese(II) porphyrins. EPR studies,” J. Am. Chem. Soc., 100, No. 23, 7253–7259 (1978).

    Google Scholar 

  11. E. I. Karakazova, A. B. Solov'eva, L. V. Karmilova, et al., “Complexation of Co(Il)-tetra-p-methoxyphenylporphyrin with molecular oxygen in the presence of unsaturated hydrocarbons,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 533–536 (1984).

    Google Scholar 

  12. R. G. Pearson, Symmetry Rules for Chemical Reactions, Wiley, New York (1976).

    Google Scholar 

  13. S. Inagaki, S. Yamabe, H. Fujimoto, and K. Fukui, “A consideration of orbital interaction in the reaction of 1Δg molecular oxygen with ethylene derivatives,” Bull. Chem. Soc. Jpn., 45, No. 12, 3510–3514 (1972).

    Google Scholar 

  14. K. Yamaguchi, T. Fueno, and H. Fukutome, “Mechanisms of the reactions of singlet molecular oxygen with olefins,” Chem. Phys. Lett., 22, No. 3, 466–470 (1973).

    Google Scholar 

  15. K. Yamaguchi, S. Yabushita, and T. Fueno, “Geometry optimization of the diketone, perepoxide, and 1,4-diradicals for the ethylene plus molecular oxygen system: mechanism of photooxidation of olefins,” Chem. Phys. Lett., 78, No. 3, 572–577 (1981).

    Google Scholar 

  16. M. J. S. Dewar and W. Thiel, “Ground state of molecules. 30. MINDO/3 study of reactions of singlet (1Δg) oxygen with carbon-carbon double bonds,” J. Am. Chem. Soc., 97, No. 14, 3978–3986 (1975).

    Google Scholar 

  17. M. Orfanopoulos, M. V. Grdina, and L. M. Stephenson, “Site specificity in the singlet oxygen-trisubstituted olefin reaction,” J. Am. Chem. Soc., 101, No. 1, 275–276 (1979).

    Google Scholar 

  18. A. Dedieu and M. Rohmer, “Oxygen binding to manganese porphyrin. An ab initio calculation,” J. Am. Chem. Soc., 99, No. 24, 8050–8051 (1977).

    Google Scholar 

  19. A. Dedieu, M. Rohmer, and A. Veillard, “Ab initio calculations of metalloporphyrins,” Adv. Quantum Chem., 16, 43–97 (1982).

    Google Scholar 

  20. C. Weschler, B. Hoffman, and F. Basolo, “Synthetic oxygen carrier. A dioxygen adduct of a manganese porphyrin,” J. Am. Chem. Soc., 97, No. 18, 5278–5280 (1975).

    Google Scholar 

  21. B. H. Huynh, D. A. Case, and M. Karplus, “Nature of the iron-oxygen bond in oxyhemoglobin,” J. Am. Chem. Soc., 99, No. 18, 6103–6105 (1977).

    Google Scholar 

  22. D. A. Case, B. H. Huynh, and M. Karplus, “Binding of oxygen and carbon monoxide to hemoglobin. An analysis of the ground and excited states,” J. Am. Chem. Soc., 101, No. 16, 4433–4453 (1979).

    Google Scholar 

  23. E. Cartmell and G. W. Fowles, Valency and Molecular Structure, 4th edn., Butterworths, London (1977).

    Google Scholar 

  24. A. P. Hansen and H. M. Goff, “Low-spin manganese(III)porphyrin imidazolate and cyanide complexes. Modulation of magnetic anisotropy by axial ligation,” Inorg. Chem., 23, No. 26, 4519–4525 (1984).

    Google Scholar 

  25. G. E. Toney, A. Gold, J. Savrin, et al., “1H and 13C NMR study of the effects of the meso substituents on the S = 3/2, 5/2 spin state admixture of (perchlorato)(tetraarylporphinato)iron(III) complexes,” Inorg. Chem., 23, 4350–4352 (1984).

    Google Scholar 

  26. D. F. Eving, “13C substituent effects in monosubstituted benzenes,” Org. Magn. Reson., 12, No. 9, 499–524 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 4, pp. 428–435, July–August 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugreev, A.L., Solov'eva, A.B., Samokhvalova, A.I. et al. Monooxygenase activity of metalloporphyrins and mechanism of activation of molecular oxygen. Theor Exp Chem 23, 400–407 (1988). https://doi.org/10.1007/BF00536357

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00536357

Keywords

Navigation