Skip to main content
Log in

Spectrum of quasihomopolar states and dynamic instability of polymer chains with conjugated bonds

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

Using the spin Hamiltonian method, we have studied the dynamic instability of quasi-one-dimensional spin chains, which are models of the corresponding conjugated polymers. We have considered the example of chain deformation leading to a singular response of the original one-dimensional problem. We have formulated the conditions for activationless character of excitations having multiplicity of the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. N. Bulaevskii, “Qausihomopolar electron levels in crystals and molecules,” Zh. Éksp. Teor. Fiz., 51, No. 1, 230–239 (1966).

    Google Scholar 

  2. A. A. Ovchinnikov and V. O. Cheranovskii, “Perturbation theory in the Spin Hamiltonian Method,” Teor. Éksp. Khim., 16, No. 2, 147–153 (1980).

    Google Scholar 

  3. I. A. Misurkin and A. A. Ovchinnikov, “Electron structure and properties of polymer molecules with conjugated bonds,” Usp. Khim., 46, No. 10, 1835–1870 (1977).

    Google Scholar 

  4. V. O. Cheranovskii, “Recyclization reactions in a multielectron treatment,” Teor. Éksp. Khim., 17, No. 1, 21–27 (1981).

    Google Scholar 

  5. M. M. Mestechkin and A. G. Gershikov, “Virial theorem for the adiabatic potential and dynamic instability of polyatomic molecules,” 9th All-Union Conference on Quantum Chemistry: Abstracts, Ivanova, July 10–12, 1985 [in Russian], B. I., Chernogolovka (1985), Pt. 1, pp. 41–42.

  6. P. Lancaster, Theory of Matrices [Russian translation], Nauka, Moscow (1978).

    Google Scholar 

  7. H. Bethe, “Theory of metals. Properties and eigenfunctions of linear atomic chains,” Z. Phys., 71, No. 8, 205–226 (1931).

    Google Scholar 

  8. J. Des Cloizeaux and J. J. Pearson, “Spin-wave spectrum of the antiferromagnetic linear chain,” Phys. Rev., 128, No. 5, 2131–2135 (1962).

    Google Scholar 

  9. A. A. Ovchinnikov, “Excitation spectrum of the antiferromagnetic Heisenberg chain,” Zh. Éksp. Teor. Fiz., 56, No. 4, 1354–1365 (1969).

    Google Scholar 

  10. L. A. Takhtadzhyan and L. D. Faddeev, “Spectrum and scattering of excitations in a one-dimensional isotropic Heisenberg magnet,” Zap. Nauch. Sem. Mat. Inst. im. V. A. Steklova Akad. Nauk SSSR, 109, 134–178 (1981).

    Google Scholar 

  11. D. J. Klein, “Exact ground states for a class of antiferromagnetic Heisenberg models with short-range interactions,” J. Phys. A, 15, No. 2, 661–671 (1982).

    Google Scholar 

  12. W. J. Caspers, “Exact ground states for a class of linear antiferromagnetic spin systems,” Physica A, 115, No. 1/2, 275–280 (1982).

    Google Scholar 

  13. L. N. Bulaevskii, “Theory of an inhomogeneous antiferromagnetic spin chain,” Zh. Éksp. Teor. Fiz., 44, No. 3, 1008–1013 (1963).

    Google Scholar 

  14. T. W. Ruijgrok and S. Rodriguez, “Linear antiferromagnetic chain,” Phys. Rev., 119, No. 2, 596–599 (1961).

    Google Scholar 

  15. Z. G. Soos, “Theory of linear Heisenberg antiferromagnet. Application to paramagnetic excitations in organic crystals,” J. Chem. Phys., 43, No. 4, 1121–1140 (1965).

    Google Scholar 

  16. K. A. Hashimoto, “A theoretical estimate for quasihomopolar singlet levels in long polyenes with a spin model Hamiltonian,” Chem. Phys., 80, No. 3, 253–261 (1983).

    Google Scholar 

  17. J. M. Rabin, “Renormalization group studies of antiferromagnetic chains. 1. Nearest-neighbor interactions,” Phys. Rev. B, 21, No. 5, 2027–2037 (1980).

    Google Scholar 

  18. D. J. Klein and M. A. Garcia-Bach, “Variational localized-site cluster expansions. 10. Dimerization in linear Heisenberg chains,” Phys. Rev. B, 19, No. 2, 877–886 (1979).

    Google Scholar 

  19. E. Lieb, T. Shultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Ann. Phys., 16, No. 3, 407–466 (1961).

    Google Scholar 

  20. A. A. Ovchinnikov and V. O. Cheranovskii, “Excitation spectrum of magnetic alternant chains with odd number of atoms in the elementary unit,” Dokl. Akad. Nauk SSSR, 266, No. 4, 838–840 (1982).

    Google Scholar 

  21. E. Lieb and D. Mattis, “Ordering energy levels of interacting spin systems,” J. Math. Phys., 3, No. 4, 749–751 (1962).

    Google Scholar 

  22. A. A. Ovchinnikov, “Multiplicity of the ground state of large alternant organic molecules with conjugated bonds,” Theor. Chim. Acta, 47, No. 4, 297–304 (1978).

    Google Scholar 

  23. A. B. Harris, “Alternating linear Heisenberg antiferromagnet: the exciton limit,” Phys. Rev. B, 7, No. 7, 3166–3187 (1973).

    Google Scholar 

  24. V. O. Cheranovskii, “Quantum chemical study of conjugated systems with high spin multiplicity and hetero aroms in a conjugation chain,” Author's Abstract of Candidate's Dissertation, Chemical Sciences, Moscow (1981).

    Google Scholar 

  25. W. Grieger, “Ground state of the isotropic one-dimensional Heisenberg antiferromagnet,” Phys. Rev. B, 30, No. 1, 344–347 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 4, pp. 395–401, July–August, 1987.

The author expresses thanks to A. A. Ovchinnikov for discussion of the results of the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheranovskii, V.O. Spectrum of quasihomopolar states and dynamic instability of polymer chains with conjugated bonds. Theor Exp Chem 23, 368–374 (1988). https://doi.org/10.1007/BF00536352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00536352

Keywords

Navigation