, Volume 52, Issue 1–2, pp 95–104 | Cite as

Computation of a two-dimensional stress intensity factor by the boundary element method

  • M. Tanaka
  • M. Hamada
  • Y. Iwata


This paper presents a boundary element formulation for elastostatic problems. The formulation is expressed in terms of the matrix notation, so that it is easily applicable to an available system of matrix structural analysis. A computer program developed is used to calculate the stress intensity factor KI for some example problems in plane elasticity. Comparison is made between the boundary element calculations and other solutions, whereby the effectiveness of the boundary element method is demonstrated.


Neural Network Information Theory Stress Intensity Factor Nonlinear Dynamics Boundary Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Berechnung eines zweidimensionalen Spannungsintensitätsfaktors mit der Methode der Bandelemente


Dieser Aufsatz bietet eine Formulierung elastostatischer Probleme durch die Methode der Randelemente an. Die Formulierung benutzt eine Darstellung in Matrizenbezeichnung, so daß sie auf ein verfügbares System für Matrizenstrukturberechnung einfach anwendbar ist. Ein ausgebautes Computerprogramm wird auf die Berechnung des Spannungsintensitätsfaktors Ki für einige Beispiele in der ebenen Elastizität angewendet. Die mittels der Randelemente erhaltenen Ergebnisse werden mit anderen Lösungen verglichen. Dadurch zeigt sich die Wirksamkeit der Methode der Randelemente.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brebbia, C. A.: The Boundary Element Method for Engineers. London: Pentech Press 1978Google Scholar
  2. 2.
    Brebbia, C. A.; Walker, S.: Boundary Element Techniques in Engineering. London: Newness-Butter- worths 1980Google Scholar
  3. 3.
    Tanaka, K.; Tanaka, M.: Time-space boundary elements for transient heat conduction problems. Appl. Math. Modell. 4 (1980) 331–334Google Scholar
  4. 4.
    Tanaka, M.; Tanaka, K.: Transient heat conduction problems in inhomogeneous media discretized by means of boundary-volume element, Nucl. Eng. Des. 60 (1980) 381–387Google Scholar
  5. 5.
    Tanaka, M.; Tanaka, K.: On boundary-volume element discretization of inhomogeneous elastodynamic problems, Appl. Math. Modell. 5 (1981) 194–198Google Scholar
  6. 6.
    Tanaka, K.; Tanaka, M.: A boundary element formulation in linear piezoelectric problems, ZAMP 31 (1980) 568–579Google Scholar
  7. 7.
    Tanaka, M.; Tanaka, K.: On a New Boundary Element Solution Scheme for Elastoplasticity. Ing.-Arch. 50 (1981) 289–295Google Scholar
  8. 8.
    Tanaka, M.; Tanaka, K.: On numerical solution scheme for thermoelastic problems in inhomogeneous media by means of boundary-volume element, ZAMM 60 (1980) 719–723Google Scholar
  9. 9.
    Cruse, T. A.; Rizzo, F. J. (Eds.): Boundary-Integral Equation Method: Computational Applications in Applied Mechanics. New York: ASME 1975Google Scholar
  10. 10.
    Brebbia, C. A. (ed.): Eecent Advances in Boundary Element Methods. London: Pentech Press 1978Google Scholar
  11. 11.
    Brebbia, C. A. (ed.): New Developments in Boundary Element Methods. Southampton: CML Publications 1980Google Scholar
  12. 12.
    Banerjee, P. K.; Butterfield, R. (Eds.): Developments in Boundary Element Methods — 1. London: Applied Science Publishers 1979Google Scholar
  13. 13.
    Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, 4th ed. p. 183, Cambridge: Cambridge Univ. Press 1927Google Scholar
  14. 14.
    Oden, J. T.; Reddy, J. N.: An Introduction to the Mathematical Theory of Finite Elements, p. 197, New York: John Wiley & Sons 1976Google Scholar
  15. 15.
    Hahn, H. G.: Bruchmechanik, p. 82, Stuttgart: B. G. Teubner 1976Google Scholar
  16. 16.
    Isida, M.: Effect of width and length on stress intensity factors of internally cracked plates under various boundary conditions, Int. J. Fract. Mech. 7 (1971) 301–316Google Scholar
  17. 17.
    Bowie, O. L.; Freese, C. E.: Elastic analysis for radial crack in a circular ring. Eng. Fract. Mech. 4 (1972) 315–322Google Scholar
  18. 18.
    Baratta, F. I.: Stress intensity factors for internal multiple cracks in thick-walled cylinders stressed by internal pressure using load relief factors, Eng. Fract. Mech. 10 (1978) 691–697Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Tanaka
    • 1
  • M. Hamada
    • 1
  • Y. Iwata
    • 1
  1. 1.Department of Mechanical Engineering Faculty of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations