On the closability of Dirichlet forms

  • Martin L. Silverstein


Necessary and sufficient conditions are found for closability of a two dimensional Dirichlet form which reduces to \(\int {dx} \int {dy} |y|^{1 - \alpha } |\nabla f(x,y)|^2 ,0 < \alpha < 2\) whenever f is supported in the complement of the x-axis.


Stochastic Process Probability Theory Mathematical Biology Dirichlet Form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beurling, A., Deny, J.: Dirichlet Spaces, Proc. Nat. Acad. Sci. U.S.A. 45, 208–215 (1959)Google Scholar
  2. 2.
    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York-London: Academic Press 1968Google Scholar
  3. 3.
    Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable process. Trans. Amer. Math. Soc. 540–544 (1961)Google Scholar
  4. 4.
    Feller, W.: On the intrinsic form for second order differential operators. Ill. J. Math. 2, 1–18 (1958)Google Scholar
  5. 5.
    Fukushima, M.: On boundary conditions for multidimensional Brownian motion with symmetric resolvents. J. Math. Soc. Japan 21, 485–526 (1969)Google Scholar
  6. 6.
    Fukushima, M.: On the generation of Markov processes by symmetric forms. Proc. Second Japan-USSR Sympos. Probab. Theory. Lect. Notes in Math. 330, 46–79. Berlin-Heidelberg-New York: Springer Verlag 1973Google Scholar
  7. 7.
    Fukushima, M.: (In preparation.) Dirichlet Forms and Markov processesGoogle Scholar
  8. 8.
    Kelley, J.L., Namoika, I.: Linear Topological Spaces. Princeton: Van Nostrand 1963Google Scholar
  9. 9.
    Molcanov, S.A., Ostrovskii, E.: Symmetric stable processes as traces of degenerate diffusion processes. Theory Probability Appl. 14, 128–131 (1969)Google Scholar
  10. 10.
    Riesz, F., Nagy, B.S.: Functional Analysis. New York: Ungar 1955Google Scholar
  11. 11.
    Silverstein, M.L.: Symmetric Markov processes. Lect. Notes in Math. 426. Berlin-Heidelberg-New York: Springer Verlag 1974Google Scholar
  12. 12.
    Silverstein, M.L.: Boundary theory for symmetric Markov processes. Lect. Notes in Math. 516. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  13. 13.
    Silverstein, M.L.: Applications of the sector condition to the classification of submarkovian semigroups. Trans. Amer. Math. Soc. 244, 103–146 (1978)Google Scholar
  14. 14.
    Spitzer, F.: Some theorems concerning two dimensional Brownian motion. Trans. Amer. Math. Soc. 87, 187–197 (1958)Google Scholar
  15. 15.
    Spitzer, F.: Principles of Random Walk. New York: Van Nostrand 1964Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Martin L. Silverstein
    • 1
  1. 1.Department of MathematicsWashington UniversitySt. LouisUSA

Personalised recommendations