Semi-stable Markov processes. I

  • John Lamperti


Stochastic Process Probability Theory Markov Process Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumenthal, R.M., and R.K. Getoor: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961).Google Scholar
  2. 2.
    Dynkin, E.B.: Markov Processes. I. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  3. 3.
    Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952).Google Scholar
  4. 4.
    Ito, K.: Poisson point processes attached to Markov processes. To appear in Proc. Sixth Berkeley Symposium.Google Scholar
  5. 5.
    Ito, K., and H.P. McKean, Jr.: Brownian motion on a half line. Ill. J. Math. 7, 181–231 (1963).Google Scholar
  6. 6.
    Khintchine, A.: Sur la croissance locale des processus stochastique homogènes à acroissements indépendants. Izvestiia A.N. S.S.S.R., ser. mat. 487–508 (1939).Google Scholar
  7. 7.
    Kolmogorov, A.N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Doklady A.N., S.S.S.R. (n.s.) 26, 115–118 (1940).Google Scholar
  8. 8.
    Lamperti, J.W.: A new class of probability limit theorems. J. Math. Mech. 11, 749–772 (1962).Google Scholar
  9. 9.
    Lamperti, J.W.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62–78 (1962).Google Scholar
  10. 10.
    Lamperti, J.W.: On extreme order statistics. Ann. Math. Stat. 35, 1726–1737 (1964).Google Scholar
  11. 11.
    Lamperti, J.W.: On random time substitutions and the Feller property. Markov processes and potential theory, pp. 87–101. J. Chover (ed.). New York: Wiley 1967.Google Scholar
  12. 12.
    Lamperti, J.W.: Limit distributions for branching processes. Proc. Fifth Berkeley Symposium. Univ. of Calif. Press, 1967. Vol. II, part 2, pp. 225–241.Google Scholar
  13. 13.
    Lamperti, J.W.: The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 7, 271–288 (1967).Google Scholar
  14. 14.
    Lamperti, J.W.: Continuous state branching processes. Bull. Amer. Math. Soc. 73, 382–386 (1967).Google Scholar
  15. 15.
    Loeve, M.: Probability Theory, Sec. ed. Princeton: Van Nostrand 1960.Google Scholar
  16. 16.
    Mandelbrot, B., and J.W.Van Ness: Fractional Brownian motions, fractional noises and applications. S.I.A.M. Review 10, 422–437 (1968).Google Scholar
  17. 17.
    Stone, C.: Zeros of semi-stable processes. Ill. J. Math. 7, 631–637 (1963).Google Scholar
  18. 18.
    Stone, C.: Limit theorems for random walks, birth-and-death processes and diffusion processes. Ill. J. Math. 7, 638–660 (1963).Google Scholar
  19. 19.
    Wendel, J.G.: Zero-free intervals of semi-stable Markov processes. Math. Scand. 14, 21–34 (1964).Google Scholar
  20. 20.
    Wendel, J.G., and S.J. Taylor: The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 170–180 (1966).Google Scholar
  21. 21.
    Wentzell, A.D.: Semigroups of operators that correspond to a generalized differential operator of second order (in Russian). Dokl. Akad. Nauk SSSR (N.S.) 111, 269–272 (1956).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • John Lamperti
    • 1
  1. 1.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations