Biophysics of structure and mechanism

, Volume 9, Issue 1, pp 61–72 | Cite as

Electron spin resonance spectra of penta- and hexacoordinated nitrosyl iron protoporphyrin IX complexes

  • M. Christahl
  • H. Twilfer
  • K. Gersonde


Electron spin resonance (ESR) spectra of frozen aqueous solutions of NO · haem · base complexes and NO · haem intercalated into dodecyl sulfate micelles have been measured at 77 K and analyzed for the hyperfine components of 15NO,14N-base, 14N-pyrroles and 57Fe which coincide with the principal directions of the g tensor. The influence of the basicity of the nitrogen base on the spin distribution and geometry of the Fe-N-O grouping has been demonstrated by replacing imidazole for pyridine and by comparing the ESR spectra with those obtained for the monomeric insect haemoglobin CTT IV.

The comparison of the hyperfine parameters described for the so-called pentacoordinated nitrosyl complex of CTT IV with those of the NO · haem intercalated into detergent micelles has furnished evidence that the ESR spectrum of this conformation state of haemoglobin has to be definitely assigned to a pentacoordinated nitrosyl complex.

The azz values increase with the following orders: CTT IV (2.98 mT) < imidazole complex (3.04mT) < pyridine complex (3.15mT) for 15NO, and pyridine complex (0.59 mT) < imidazole complex (0.67 mT) < CTT IV (0.70 mT) for the 14N-base. This result is in conformity with an increase of the σ donor and the π acceptor strengths of the nitrogen base in trans-position to 15NO. The ayy and axx components of 15NO and the 14N-base are strongly nonequivalent in the nitrosyl haemoglobin CTT IV, and less nonequivalent in the NO · haem · pyridine complex, indicating bending of the Fe-N-O grouping. The hyperfine components of the axial ligands coinciding with the x and y component of the g tensor are nearly equal for the NO · haem · imidazole complex.

Key words

Electron spin resonance Nitrosyl-haem complexes Coordination state Hyperfine constants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kon H, Kataoka N (1969) Electron paramagnetic resonance of nitric oxide-protoheme complexes with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry 8:4757–4762Google Scholar
  2. 2.
    Kon H (1975) An interpretation of the three line EPR spectrum of nitric oxide hemeproteins and related model systems:The effect of the heme environment. Biochim Biophys Acta 379:103–118Google Scholar
  3. 3.
    Trittelvitz E, Gersonde K, Winterhalter KH (1975) Electron spin resonance of nitrosyl haemoglobins: Normal α and Β chains and mutants Hb M Iwate and Hb Zürich. Eur J Biochem 51:33–42Google Scholar
  4. 4.
    Overkamp M, Twilfer H, Gersonde K (1976) Conformation-controlled trans-effect of the proximal histidine in haemoglobins. An electron spin resonance study of monomeric nitrosyl-57Fe-haemoglobins. Z Naturforsch 31c:524–533Google Scholar
  5. 5.
    Twilfer H, Gersonde K (1976) Non-equivalence and inverse allosteric response of α and Β chains in haemoglobins. An electron spin resonance study of NO-ligated Hb Kansas. Z Naturforsch 31c:664–674Google Scholar
  6. 6.
    Szabo A, Perutz MF (1976) Equilibrium between six- and five-coordinated hemes in nitrosylhemoglobin: Interpretation of electron spin resonance spectra. Biochemistry 15:4427–4428Google Scholar
  7. 7.
    Kon H (1968) Paramagnetic resonance study of nitric oxide hemoglobin. J Biol Chem 243:4350–4357Google Scholar
  8. 8.
    Rein H, Ristau O, Scheler W (1972) On the influence of allosteric effectors on the electron paramagnetic spectrum of nitric oxide haemoglobin. FEBS Lett 24:24–26Google Scholar
  9. 9.
    Trittelvitz E, Sick H, Gersonde K (1972) Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Eur J Biochem 31:578–584Google Scholar
  10. 10.
    Antholine WE, Mauk AG, Swartz HM, Taketa F (1973) Electron spin resonance spectra of feline NO-hemoglobins. FEBS Lett 36:199–202Google Scholar
  11. 11.
    Taketa F, Antholine WE, Mauk AG, Libnoch JA (1975) Nitrosylhemoglobin Wood: Effects of inositol hexaphosphate on thiol reactivity and electron paramagnetic resonance spectrum. Biochemistry 14:3229–3233Google Scholar
  12. 12.
    Tamura M, Kobayashi K, Hayashi K (1976) The NO-probed detectin of the heme-linked ionization group of myoglobin. Biochem Biophys Res Commun 70:265–270Google Scholar
  13. 13.
    Nagai K, Hori H, Yoshida S, Sakamoto H, Morimoto H (1978) The effect of quaternary structure on the state of the α and Β subunits within nitrosyl haemoglobin. Low temperature photodissociation and the ESR spectra. Biochim Biophys Acta 532:17–28Google Scholar
  14. 14.
    Christahl M, Gersonde K (1982) Structure-related changes of the electron spin resonance spectra of the monomeric nitrosyl haemoglobin IV from Chironomus thummi thummi. Biophys Struct Mech 8:271–288Google Scholar
  15. 15.
    Yonetani T, Yamamoto H, Erman JE, Leigh jr JS, Reed GH (1972) Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apohemoprotein complexes. J Biol Chem 247:2447–2455Google Scholar
  16. 16.
    Wayland BB, Olson LW (1974) Spectroscopic studies and bonding model for nitric oxide complexes of iron porphyrins. J Am Chem Soc 96:6037–6041Google Scholar
  17. 17.
    Piciulo PJ, Rupprecht G, Scheidt WR (1974) Stereochemistry of nitrosyl-metalloporphyrins. Nitrosyl-α,Β,γ,δ-tetraphenylporphinato(1-methylimidazole) iron and nitrosyl-α,Β,γ,δ-tetraphenylporphinato(4-methylpiperidine) manganese. J Am Chem Soc 96:5293–5295Google Scholar
  18. 18.
    Scheidt WR, Frisse ME (1975) Nitrosylmetalloporphyrins. II. Synthesis and molecular stereochemistry of nitrosyl-α,Β,γ,δ-tetraphenylporphinatoiron(II). J Am Chem Soc 97:17–21Google Scholar
  19. 19.
    Twilfer H, Gersonde K, Christahl M (1981) Resolution enhancement of EPR spectra using the Fourier transform technique. Analysis of nitrosyl cytochrome c oxidase in frozen solution. J Magn Reson 44:470–478Google Scholar
  20. 20.
    Lamson DW, Coulson AFW, Yonetani T (1973) Evaporative thin layer Chromatographic separation of hemin dicarboxylic acids. Anal Chem 45:2273–2276Google Scholar
  21. 21.
    Christahl M, Raap A, Gersonde K (1981) pH dependence of oxy and deoxy cobalt-substituted leghemoglobin from soybean. An electron spin resonance study. Biophys Struct Mech 7:171–186Google Scholar
  22. 22.
    Simplicio J (1972) Hemin monomers in micellar sodium lauryl sulfate. A spectral and equilibrium study with cyanide. Biochemistry 11:2525–2588Google Scholar
  23. 23.
    Bayer E, Schretzmann P (1976) Reversible Oxygenierung von Metallkomplexen. Struct Bonding 2:181–250Google Scholar
  24. 24.
    Braunitzer G, Buse G, Gersonde K (1974) Structure and function of hemoglobins. In:Hayaishi O (ed) Molecular oxygen in biology: Topics in molecular oxygen research. North-Holland, Amsterdam, New York, pp 183–218Google Scholar
  25. 25.
    Chien JCW, Dickinson LC (1977) Nonequivalence of subunits in (14N) nitrosylhemoglobin Kansas. A single crystal electron paramagnetic resonance investigation. J Biol Chem 252:1331–1335Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Christahl
    • 1
  • H. Twilfer
    • 1
  • K. Gersonde
    • 1
  1. 1.Abteilung Physiologische ChemieRheinisch-WestfÄlische Technische Hochschule AachenAachenGermany

Personalised recommendations