Advertisement

Ingenieur-Archiv

, Volume 51, Issue 3–4, pp 195–213 | Cite as

On the linear and nonlinear stability analysis in the theory of thin elastic shells

  • H. Stumpf
Article
  • 106 Downloads

Summary

In the frame of the geometrically nonlinear theory of thin elastic shells with moderate rotations a set of consistent equations for the nonlinear stability analysis is derived by application of energy criteria. Some methods of functional analysis are used which enable to prove the symmetry of the stability equations and to calculate bifurcation buckling from linear and nonlinear equilibrium branches and also snap-through buckling loads by variational approximating procedures.

Keywords

Neural Network Complex System Functional Analysis Information Theory Stability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Über die lineare und nichtlineare Stabilitätsberechnung in der Theorie dünner elastischer Schalen

Übersicht

Im Rahmen einer geometrisch-nichtlinearen Theorie dünner Schalen mit moderaten Rotationen werden konsistente Gleichungen zur nichtlinearen Stabilitätsberechnung hergeleitet, wobei von Energiekriterien ausgegangen wird. Die Benutzung einiger Methoden der Funktionalanalysis ermöglicht den Nachweis der Symmetrie der Stabilitätsgleichungen und die Berechnung des Verzweigungs-Beulproblems bei linearen und nichtlinearen Gleichgewichtszuständen sowie die Bestimmung der kritischen Last beim Durchschlagproblem mit Hilfe variationeller Näherungsverfahren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koiter, W. T.: General equations of elastic stability for thin shells. Proc. Symp. Theory of Shells, to honour Lloyd H. Donnell, Univ. Houston, USA, 1966Google Scholar
  2. 2.
    Srubshchik, L. S.; Iudovich, V. I.: Note on the stability of membrane solutions in the nonlinear theory of plates and shells. PMM 30/1 (1966) 116–123Google Scholar
  3. 3.
    Koiter, W. T.: A sufficient condition for the stability of shallow shells. Proc. K. Ned. Akad. Wet. Ser. B70 (1967) 367–375Google Scholar
  4. 4.
    Budiansky, B.: Notes on nonlinear shell theory. J. Appl. Mech. 35 (1968) 393–401Google Scholar
  5. 5.
    Danielson, D. A.; Simmonds, J. G.: Accurate buckling equations for arbitrary and cylindrical elastic shells. Int. J. Eng. Sci. 7 (1969) 459–468Google Scholar
  6. 6.
    Kalnins, A.; Biricikoglu, V.: Deformation of prestressed thin shells. Nucl. Eng. Des. 16 (1971) 343–357Google Scholar
  7. 7.
    Basar, Y.: Eine Schalentheorie endlicher Verformungen und ihre Anwendung zur Herleitung der Stabilitätstheorie. ZAMM 52 (1972) 197–211Google Scholar
  8. 8.
    Budianski, B.: Theory of buckling and post-buckling behavior of elastic structures. Adv. Appl. Mech. 14 (1974) 1–65Google Scholar
  9. 9.
    Koiter, W. T.: A basic open problem in the theory of elastic stability. Joint IUTAM/IMU Symp. Marseille 1975, pp. 366–373. Lect. Notes in Math. Vol. 503, Berlin, Heidelberg, New York: Springer 1976Google Scholar
  10. 10.
    Fritz, H.; Krätzig, W. B.; Wittek, U.: Stabilitätsgleichungen elastischer Flächentragwerke unter besonderer Beachtung der Energieerhaltung. ZAMM 56 (1976) 409–421Google Scholar
  11. 11.
    Kabanov, V. V.: Equations of thin shells for strongly inhomogeneous stress-strain states. Mech. Solids 14/4 (1979) 135–140Google Scholar
  12. 12.
    Weinitschke, H. J.: Asymmetric buckling of clamped shallow spherical shells. NASA TN-D-1510 (1962) 481–490Google Scholar
  13. 13.
    Hutchinson, J. W.; Koiter, W. T.: Postbuckling theory. Appl. Mech. Rev. 23 (1970) 1353–1366Google Scholar
  14. 14.
    Flügge, W.: Handbook of engineering mechanics. New York: McGraw-Hill 1962Google Scholar
  15. 15.
    Bolotin, V. V.: The dynamic stability of elastic systems. San Francisco: Holden-Day 1964Google Scholar
  16. 16.
    Brush, Don O.; Almoth, Bo O.: Buckling of bars, plates, and shells. New York: McGraw-Hill 1975Google Scholar
  17. 17.
    Grigolyuh, E. J.; Kabanov, V. V.: Stability of shells (in Russian). Moscow: Nauka 1978Google Scholar
  18. 18.
    Friedrichs, K.; Stoker, J.: The nonlinear boundary value problem of the buckled plate. Am. J. Math. 63 (1941) 839–888Google Scholar
  19. 19.
    Bauer, L.; Reiss, E.: Nonlinear buckling of rectangular plates. J.S.I.A.M. 13 (1965) 603–627Google Scholar
  20. 20.
    Keller, J. B.; Antmann, St. S.: Bifurcation theory and nonlinear eigenvalue problems. New York, Amsterdam: W. A. Benjamin, 1969Google Scholar
  21. 21.
    Knightly, Gr. H.; Sather, D.: Nonlinear buckled states of rectangular plates. Arch. Rat. Mech. Anal. 54 (1974) 357–372Google Scholar
  22. 22.
    Antmanu, St. S.: Buckled states of nonlinearly elastic plates. Arch. Rat. Mech. Anal. 67 (1977/78) 111–149Google Scholar
  23. 23.
    Sanders, J. L.: Nonlinear theories of thin shells. Quart. Appl. Math. 21 (1963) 21–36Google Scholar
  24. 24.
    Koiter, W. T.: On the nonlinear theory of thin shells I, II, III. Proc. K. Ned. Akad. Wet., B. 69 (1966) 1–54Google Scholar
  25. 25.
    John, F.: Estimates for the derivatives of the stresses in a thin shell and interior shell equations. Comm. Pure and Appl. Math. 18 (1965) 235–267Google Scholar
  26. 26.
    Pietraszkiewicz, W.: Introduction to the non-linear theory of shells. Mitt. Inst. Mech. 10, Ruhr-Univ. Bochum, 1977Google Scholar
  27. 27.
    Stumpf, H.: Generating functionals and extremum principles in nonlinear elasticity with application to nonlinear plate and shallow shell theory. Joint IUTAM/IMU Symp. Marseille 1975. Lect. Notes in Math. Vol. 503, 500–510, Berlin, Heidelberg, New York: Springer 1976Google Scholar
  28. 28.
    Stumpf, H.: Dual extremum principles and error bounds in nonlinear elasticity theory. J. Elasticity 8/4 (1978) 425–438Google Scholar
  29. 29.
    Stumpf, H.: The derivation of dual extremum and complementary stationary principles in geometrical non-linear shell theory. Ing.-Arch. 48 (1979) 221–237Google Scholar
  30. 30.
    Schmidt, R.; Pietraszkiewicz, W.: Variational principles in the geometrically non-linear theory of shells undergoing moderate rotations. Ing.-Arch. 50 (1981) 187–201Google Scholar
  31. 31.
    Labisch, F.: On the dual formulation of boundary value problems in non-linear elastostatics. To appear in: Int. J. Eng. Sci. 1981Google Scholar
  32. 32.
    Como, M.; Grimaldi, A.: Stability, buckling and postbuckling of elastic structures. I: Meccanica 10/4 (1975) 254–268. II: ibid. 12/4 (1977) 236–248Google Scholar
  33. 33.
    Poincaré, H.: Sur les équations aux dérivés partielles de la physique mathematique. Am. J. Math. 12 (1890) 211–294Google Scholar
  34. 34.
    Weinberger, H. F.: On a nonlinear eigenvalue problem. J. Math. Anal. Appl. 21 (1968) 506–509Google Scholar
  35. 35.
    Eisenfeld, J.: Quadratic eigenvalue problem. J. Math. Anal. Appl. 23 (1968) 58–70Google Scholar
  36. 36.
    Nachbar, W.; Jong, J. M.: Quadratic eigenvalue problems from a nonlinear structural analysis. SIAM J. Appl. Math. 25/3 (1973) 539–555Google Scholar
  37. 37.
    Stein, E.: Variational functionals in the geometrical nonlinear theory of thin shells and finite element discretizations with applications to stability problems. IUTAM Symp. Tbilisi 1978, Proc. 3rd IUTAM Symp., pp. 509–535, Amsterdam: 1980Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Stumpf
    • 1
  1. 1.Lehrstuhl für Mechanik IIRuhr-Universität BochumBochum 1Bundesrepublik Deutschland

Personalised recommendations