Advertisement

Ingenieur-Archiv

, Volume 51, Issue 1–2, pp 31–43 | Cite as

Zur korrekten Modellbildung in der Dynamik diskreter Systeme

  • H. Troger
  • K. Zeman
Article

Übersicht

Zur korrekten Modellbildung bei linearen, autonomen, dynamischen Systemen wird für die Ermittlung der richtigen Anzahl von Parametern die Theorie der Verzweigungsdiagramme von Matrizen von V. I. Arnold verwendet. Als Beispiele werden die Doppelpendel mit tangentialer und richtungstreuer Endlast behandelt.

Summary

In order to obtain a correct model of a linear, autonomous, dynamical system with the right number of parameters the theory of bifurcation diagrams of matrices developed by V. I. Arnold is used. As examples two double pendula with a follower force respectively with dead loading are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ziegler, H.: Die Stabilitätskriterien der Elastomechanik. Ing.-Arch. 20 (1952) 49–52Google Scholar
  2. 2.
    Ziegler, H.: Trace Effects in Stability. In: Leipholz H. (ed.) Instability of Continuous Systems, Proc. Symp. IUTAM Herrenalb 1969. Berlin, Heidelberg, New York: Springer 1971, 96–111Google Scholar
  3. 3.
    Herrmarin, G.: Determinism and Uncertainty in Stability. In: Leipholz H. (ed.), Instability of Continuous Systems, Proc. Symp. IUTAM Herrenalb 1969. S. 238–247. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  4. 4.
    Herrmann, G.; Jong, I. C.: On the destabilizing effect of damping in nonconservative elastic systems. J. Appl. Mech. 32 (1965) 592–597Google Scholar
  5. 5.
    Herrmann, G.; Jong, I. C.: On nonconservative stability problems of elastic systems with slight damping. J. Appl. Mech. 33 (1956) 125–133Google Scholar
  6. 6.
    Poston, T.; Stewart, I.: Catastrophe Theory and its Applications. London, San Francisco, Melbourne: Pitman Publ. 1978Google Scholar
  7. 7.
    Arnold, V. I.: Lectures on Bifurcations in Versal Families. Uspekhi Mat. Nauk 27 (1972) 119–184. Russian Math. Surveys 27 (1972) 54–123Google Scholar
  8. 8.
    Smale, S.: Differentiable Dynamical Systems. Bull. Amer. Math. Soc. 73 (1967) 747–817Google Scholar
  9. 9.
    Andronov, A. A., Leontovich, E. A., Gordon, I. I., Maier, A. G.: Theory of Bifurcations of Dynamic Systems on a Plane. Izdatel'stvo Nauka, Glavnaya Redaktsiya, Fiziko-Matematicheskoi Literatury 1967. Israel Program for Scientific Translations. Jerusalem 1971Google Scholar
  10. 10.
    Galin, D. M.: On real matrices depending on parameters. Uspekhi Mat. Nauk 27 (1972) 241–242Google Scholar
  11. 11.
    Bolotin, V. V.; Stability of Viscoelastic Systems Subjected to Nonconservative Forces. In: Leipholz H. (ed.), Instability of Continuous Systems, Proc. Symp. IUTAM Herrenalb 1969. S. 349–360 Berlin-Heidelberg-New York: Springer 1971Google Scholar
  12. 12.
    Müller, P. C.: Stabilität und Matrizen, Berlin, Heidelberg, New York: Springer 1977Google Scholar
  13. 13.
    Zurmühl, R.: Matrizen. 4. Auflage. Berlin, Göttingen, Heidelberg, New York Springer 1964Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Troger
    • 1
  • K. Zeman
    • 1
  1. 1.Institut für MechanikTechnische Universität WienWienÖsterreich

Personalised recommendations