Advertisement

Theoretical and Experimental Chemistry

, Volume 30, Issue 1, pp 1–9 | Cite as

Electronic structure, energy of hydration, and stability of metal aquo ions

  • K. B. Yatsimirskii
Article

Abstract

The stability of metal aquo ions with respect to redox reactions is determined by the ionization energies of the atoms and the Gibbs energies of hydration for the ions(−ΔhG0). We present critically selected values of −ΔhG0 for 55 metal ions, determined from electrochemical, thermochemical, and spectra data. We consider the factors determining the values of −ΔhG0 (charges, ionic radii, electronic structure, and relativistic effects). For isoelectronic ions, we observe correlations between the ratios of the Gibbs energies of hydration for these ions with different charges and the ratios of their ionic radii. Based on the use of these correlations, we find −ΔhG0 for a number of aquo ions not observed experimentally and we estimate the unknown oxidation-reduction potentials for the pairs of ions M3+/M2+. We formulate the principles for stabilization of unstable oxidation states of the metals by including the corresponding ions in complexes with certain classes of ligands.

Keywords

Oxidation Hydration Gibbs Energy Oxidation State Relativistic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. Yatsimirskii and R. A. Kostrova, Lev Volodimirovich Pisarzhev'skii [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  2. 2.
    A. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley, New York (1988).Google Scholar
  3. 3.
    P. Pyykko, Chem. Rev., 88, No. 3, 563 (1988).Google Scholar
  4. 4.
    K. S. Pitzer, Accts. Chem. Res., 12, No. 8, 271 (1979).Google Scholar
  5. 5.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn., Wiley, New York (1988).Google Scholar
  6. 6.
    J. E. Huheey, Inorganic Chemistry [Russian translation], Khimiya, Moscow (1987).Google Scholar
  7. 7.
    V. P. Glushko (ed.), Thermal Constants of Substances [in Russian], VINITI, Moscow (1965–1982).Google Scholar
  8. 8.
    A. J. Bard, R. Parsons, and J. Jordan (eds.), Standard Potentials in Aqueous Solution, Dekker, New York (1985).Google Scholar
  9. 9.
    V. P. Vasil'ev, Thermodynamic Properties of Electrolyte Solutions [in Russian], Vysshaya Shkola, Moscow (1982).Google Scholar
  10. 10.
    R. D. Shannon, Acta Crystallogr. A, 32, 751 (1976).Google Scholar
  11. 11.
    J. Gazo, General Inorganic Chemistry [in Czech], Alfa Bratislave SNTL, Prague (1974).Google Scholar
  12. 12.
    L. H. Skibsted and J. Bjerrum, Acta Chem. Scand. A., 31, 155 (1977).Google Scholar
  13. 13.
    J. J. Edwards, J. Am. Chem. Soc., 76, 1540 (1954).Google Scholar
  14. 14.
    C. J. Hawkins, O. Monsted, and J. Bjerrum, Acta Chem. Scand., 24, 1059 (1970).Google Scholar
  15. 15.
    A. P. Koley, S. Purohit, L. Prasad, et al., Inorg. Chem., 31, No. 2, 305 (1992).Google Scholar
  16. 16.
    H. Jacobsen, H. B. Kraatz, T. Ziegler, et al., J. Am. Chem. Soc., 114, No. 20, 7851 (1992).Google Scholar
  17. 17.
    K. B. Yatsimirskii, Zh. Neorg. Khim., 36, No. 8, 2010–2020 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. B. Yatsimirskii
    • 1
  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryAcademy of Sciences of UkraineKiev

Personalised recommendations