An invariance principle for mixing sequences of random variables

  • Walter Philipp
  • Geoffrey R. Webb


Stochastic Process Probability Theory Mathematical Biology Invariance Principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingsley, P.: Convergence of probability measures. New York: Wiley 1968.Google Scholar
  2. 2.
    Gikhman, I.I., Skorokhod, A.V.: Introduction to the theory of random processes. Philadelphia: Saunders 1969.Google Scholar
  3. 3.
    Ibragimov, I.A.: Some limit theorems for stationary processes. Theor. Probab. Appl. 7, 349–382 (1962).Google Scholar
  4. 4.
    Iosifescu, M., Theodorescu, R.: Random processes and learning. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  5. 5.
    Loève, M.: Probability theory. 3rd. ed. Princeton: Van Nostrand 1963.Google Scholar
  6. 6.
    Philipp, W.: The central limit problem for mixing sequences or random variables. Z.Wahrscheinichkeitstheorie verw. Geb. 12, 155–171 (1969).Google Scholar
  7. 7.
    Philipp, W.: The law of iterated logarithm for mixing stochastic processes. Ann. Math. Statist. 40, 1985–1991 (1969).Google Scholar
  8. 8.
    Philipp, W.: Mixing sequences of random variables and probabilistic number theory. Memoirs AMS vol. 114, Providence 1971.Google Scholar
  9. 9.
    Prohorov, Yu.V.: Convergence of random processes and limit theorems in probability theory. Theor. Probab. Appl. 1, 157–214 (1956).Google Scholar
  10. 10.
    Webb, G.: The functional central limit theorem for nonstationary sequences of mixing random variables. Ph. D. Thesis, Duke University, Durham, N.C., 1970.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Walter Philipp
    • 1
  • Geoffrey R. Webb
    • 2
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Department of MathematicsMemphis State UniversityMemphisUSA

Personalised recommendations