Biophysics of structure and mechanism

, Volume 1, Issue 3, pp 259–271 | Cite as

Flash photometric experiments on the photochemical cycle of bacteriorhodopsin

  • N. Dencher
  • M. Wilms
Article

Abstract

The photochemical reaction cycle of bacteriorhodopsin was investigated by means of flash photometric methods. Three different intermediates with absorption maxima at about 630 nm, 411 nm, and 646 nm could be detected. Kinetic data of the occurrence of these intermediates were obtained from isolated purple membrane in different mediums and from intact halobacteria. An activation energy of 14.1±0.4 kcal·mol−1 and of about 19 kcal·mol−1 for the formation of bacteriorhodopsin 411 and of bacteriorhodopsin 565, resp., was calculated. pH-changes in the medium caused by the reaction cycle of bacteriorhodopsin were detected by use of the pH-indicator bromocresol green.

Key words

Bacteriorhodopsin Intermediate Products Reaction Kinetic pH-Changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaurock, E. A., Stoeckenius, W.: Structure of the purple membrane. Nature New Biol. 233, 152–154 (1971)Google Scholar
  2. Danon, A., Stoeckenius, W.: Photophosphorylation in Halobacterium halobium. Proc. Nat. Acad. Sci. USA 71, 1234–1238 (1974)Google Scholar
  3. Dencher, N.: Functions of bacteriorhodopsin. In: Biochemistry of sensory functions (ed. L. Jaenicke), pp. 161–163. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  4. Hildebrand, E., Dencher, N.: Photophobische Reaktionen von Halobacterium halobium und ihre Beziehung zum Retinal-Protein-Komplex der Zellmembran. Ber. dtsch. botan. Ges. 87, 93–99 (1974)Google Scholar
  5. Kayushin, L. P., Sibeldina, L. A., Lasareva, A. B., Vsevolodov, N. N., Kostikov, A. C., Richireva, G. T., Chekulaeva, L. N.: Membrane protein bacteriorhodopsin from halophilic bacteria. Studia biophys. 42, 71–74 (1974)Google Scholar
  6. Lewis, A., Spoonhower, J., Bogomolni, R. A., Lozier, R. H., Stoeckenius, W.: Tunable laser resonance Raman spectroscopy of bacteriorhodopsin. Proc. Nat. Acad. Sci. USA 71, 4462–4466 (1974)Google Scholar
  7. Nöll, G. N.: Reaktionskinetische Untersuchungen an Rinder-Rhodopsin und StÄbchenau\ensegmenten sowie 11-cis Retinal. Aachen: Thesis 1974Google Scholar
  8. Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium halobium Nature New Biol. 233, 149–152 (1971)Google Scholar
  9. Oesterhelt, D., Hess, B.: Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium Europ. J. Biochem. 37, 316–326 (1973)Google Scholar
  10. Oesterhelt, D., Meentzen, M., Schuhmann, L.: Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chromophores. Europ. J. Biochem. 40, 453–463 (1973)Google Scholar
  11. Oesterhelt, D., Stoeckenius, W.: Functions of a new photoreceptor membrane. Proc. Nat. Acad. Sci. USA 70, 2853–2857 (1973)Google Scholar
  12. Racker, E., Stoeckenius, W.: Reconstitution of purple membrane vesicles catalyzing lightdriven proton uptake and adenosine triphosphate formation. J. Biol. Chem. 249, 662–663 (1974)Google Scholar
  13. Sengbusch, G. v.: Reaktionskinetische Untersuchungen an StÄbchen-Suspensionen und Rhodopsin-Lösungen mit der Blitzlicht-Methode. Aachen: Thesis 1970Google Scholar
  14. Stoeckenius, W., Lozier, R. H.: Light energy conversion in Halobacterium halobium. J. Supramol. Struct. (in press)Google Scholar
  15. Witt, H. T.: On the analysis of photosynthesis by pulse technique in the 10−1 to 10−8 second range. In: Nobel Symposium 5: Fast reactions and primary processes in chemical kinetics (ed. S. Claesson). New York: Interscience Publishers 1967Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • N. Dencher
    • 1
  • M. Wilms
    • 1
  1. 1.Kernforschungsanlage JülichInstitut für NeurobiologieJülichFed. Rep. of Germany

Personalised recommendations