Weak invariance principles for local time

  • Edwin Perkins


We establish sufficient conditions to ensure that the suitably defined local times of a sequence of random walks converge weakly to Brownian local time.


Stochastic Process Probability Theory Local Time Mathematical Biology Invariance Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.M.: A nonstandard representation for Brownian motion and Itô integration. Israel J. Math. 25, 15–46 (1976)Google Scholar
  2. 2.
    Anderson, R.M., Rashid, S.: A nonstandard characterization of weak convergence. Proc. Amer. Math. Soc. 69, 327–332 (1978)Google Scholar
  3. 3.
    Bhattacharya, R.N., Rao, R.R.: Normal Approximation and Asymptotic Expansions. New York: Wiley 1976Google Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968Google Scholar
  5. 5.
    Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probability 1, 19–42 (1973)Google Scholar
  6. 6.
    Davis, M.: Applied Non-standard Analysis. New York: Wiley 1977Google Scholar
  7. 7.
    Feller, W.: Introduction to Probability and its Applications. Vol. 2 (second edition). New York: Wiley 1971Google Scholar
  8. 8.
    Hoover, D.N., Perkins, E.: Nonstandard construction of the stochastic integral and applications to stochastic differential equations I [to appear in Trans. Amer. Math. Soc.]Google Scholar
  9. 9.
    Hoover, D.N., Perkins, E.: Nonstandard construction of the stochastic integral and applications to stochastic differential equations II [to appear in Trans. Amer. Math. Soc.]Google Scholar
  10. 10.
    Keisler, H.J.: An infinitesimal approach to stochastic analysis. [To appear in Mem. Amer. Math. Soc.]Google Scholar
  11. 11.
    Knight, F.B.: Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109, 56–86 (1963)Google Scholar
  12. 12.
    Loeb, P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211, 113–122 (1975)Google Scholar
  13. 13.
    Loeb, P.A.: An Introduction to Nonstandard Analysis and Hyperfinite Probability Theory. In: Probabilistic Analysis and Related Topics Vol. 2, pp. 105–142. New York: Academic Press 1979Google Scholar
  14. 14.
    Loeb, P.A.: Weak Limits and the standard part. Proc. Amer. Math. Soc. 77, 128–135 (1979)Google Scholar
  15. 15.
    McKean, H.P.: A Hölder condition for Brownian local time. J. Math. Kyoto Univ. 1, 196–201 (1962)Google Scholar
  16. 16.
    Perkins, E.A.: A non-standard approach to Brownian local time. Ph.D. thesis, U. of Illinois 1979Google Scholar
  17. 17.
    Perkins, E.A.: A global intrinsic characterization of local time. Ann. Probability 9, 800–817 (1981)Google Scholar
  18. 18.
    Stroyan, K.D., Luxemburg, W.A.J.: Introduction to the Theory of Infinitesimals. New York: Academic Press 1976Google Scholar
  19. 19.
    Borodin, A.N.: Limit theorems for local times of recurrent random walks with infinite covariance. Third international Vilnius conference on probability theory and mathematical statistics. [To appear in Theory Probab. App.]Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Edwin Perkins
    • 1
  1. 1.Dept. of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations