Advertisement

Biophysics of structure and mechanism

, Volume 3, Issue 3–4, pp 303–315 | Cite as

1H NMR studies at 360 Mhz of the methyl groups in native and chemically modified basic pancreatic trypsin inhibitor (BPTI)

  • Antonio De Marco
  • Harald Tschesche
  • Gerhard Wagner
  • Kurt Wüthrich
Article

Abstract

In the 1H NMR spectra obtained at 360 MHz after digital resolution enhancement, the multiplet resonances of the methyl groups in the basic pancreatic trypsin inhibitor (BPTI) were resolved. With suitable double irradiation techniques the individual methyl resonances were assigned to the different types of aliphatic amino acid residues. Furthermore, from pH titration and comparison of the native protein with chemically modified BPTI, the resonance lines of Ala 16 in the active site and Ala 58 at the C-terminus were identified. Potential applications of the resolved methyl resonances as natural NMR probes for studies of the molecular conformations are discussed.

Key words

NMR Proteinase inhibitor Protein modification Protein structure Basic pancreatic trypsin inhibitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradbury, J. H., Chapman, B. E., King, N. L. R.: Line widths of proton magnetic resonance spectra of proteins in solution. Int. J. Protein Res. 3, 351–356 (1971)Google Scholar
  2. Brown, L. R., De Marco, A., Wagner, G., Wüthrich, K.: A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 MHz. Europ. J. Biochem. 62, 103–107 (1976)Google Scholar
  3. Campbell, I. D., Dobson, C. M., Williams, R. J. P.: Assignment of the 1H NMR spectra of proteins. Proc. Roy. Soc. Lond. A 345, 23–40 (1975)Google Scholar
  4. Campbell, I. D., Dobson, C. M., Williams, R. J. P., Xavier, A. V.: Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. J. Magn. Reson. 11, 172–181 (1973)Google Scholar
  5. Castellano, S., Bothner-By, A. A.: Analysis of NMR spectra by least squares. J. Chem. Phys. 41, 3863–3869 (1964)Google Scholar
  6. Deisenhofer, J., Steigemann, W.: Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 å resolution. Acta Cryst. B 31, 238–250 (1975)Google Scholar
  7. De Marco, A., Wüthrich, K.: 1H NMR studies of aliphatic residues in proteins. Abstracts of the VIIth Int. Conference on Magnetic Resonance in Biological Systems, St. Jovite, Québec, Canada, p. TH-P6 (1976a)Google Scholar
  8. De Marco, A., Wüthrich, K.: Digital filtering with a sinusoidal window function: An alternative technique for resolution enhancement in FT NMR. J. Magn. Reson. 24, 201–204 (1976b)Google Scholar
  9. Ernst, R. R.: Sensitivity enhancement in magnetic resonance. In: Advances in magnetic resonance, vol. 2 (ed. J. S. Waugh), pp. 1–135. New York: Academic Press 1966Google Scholar
  10. Gibbons, W. A., Beyer, C. F., Dadok, J., Sprecher, R. F., Wyssbrod, H. R.: Studies of individual amino acid residues of the decapeptide tyrocidine A by proton double-resonance difference spectroscopy in the correlation mode. Biochemistry 14, 420–429 (1975)Google Scholar
  11. Hoffmann, R. A., Forsén, S.: High resolution nuclear magnetic double and multiple resonance. In: Progress in NMR spectroscopy, vol. 1 (eds. J. W. Emsley, J. Feeney, L. H. Sutcliffe), pp. 15–204. Oxford: Pergamon Press 1966Google Scholar
  12. Jering, H., Tschesche, H.: Preparation and characterization of the active derivative of bovine trypsinkallikrein inhibitor (Kunitz) with the reactive site lysine 15-alanine 16 hydrolyzed. Europ. J. Biochem. 61, 443–452 (1976)Google Scholar
  13. Karplus, S., Snyder, G. H., Sykes, B. D.: A nuclear magnetic resonance study of bovine pancreatic trypsin inhibitor. Tyrosine titrations and backbone NH groups. Biochemistry 12, 1323–1329 (1973)Google Scholar
  14. Masson, A., Wüthrich, K.: Proton magnetic resonance investigation of the conformational properties of the basic pancreatic trypsin inhibitor. FEBS Lett. 31, 114–118 (1973)Google Scholar
  15. McDonald, C. C., Phillips, W. D.: Manifestations of the tertiary structures of proteins in high-frequency nuclear magnetic resonance. J. Amer. Chem. Soc. 89, 6332–6341 (1967)Google Scholar
  16. Pople, J. A., Schneider, W. G., Bernstein, H. J.: High resolution nuclear magnetic resonance, p. 229. New York: McGraw-Hill 1959Google Scholar
  17. Richarz, R.: NMR-Untersuchungen der Amidprotonen des basischen pankreatischen Trypsin-Inhibitors. Diploma Thesis, ETH Zürich 1975Google Scholar
  18. Sehr, P.: H-D Austauschuntersuchung von BPTI anhand von 1H-NMR-Messungen. Diploma Thesis, ETH Zürich 1974Google Scholar
  19. Snyder, G. H., Rowan III, R., Karplus, S., Sykes, B. D.: Complete tyrosine assignments in the high field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor. Biochemistry 14, 3765–3777 (1976)Google Scholar
  20. Sternlicht, H., Wilson, D.: Magnetic resonance studies of macromolecules. I. Aromatic-methyl interactions and helical structure effects in lysozyme. Biochemistry 6, 2881–2892 (1967)Google Scholar
  21. Tschesche, H.: Biochemistry of natural proteinase inhibitors. Angew. Chem. 13, 10–28 (1974)Google Scholar
  22. Vincent, J. P., Chicheportiche, R., Lazdunski, M.: The conformational properties of the basic pancreatic trypsin inhibitor. Europ. J. Biochem. 23, 401–411 (1971)Google Scholar
  23. Wagner, G., De Marco, A., Wüthrich, K.: Convolution difference 1H NMR spectra at 360 MHz of the basic pancreatic trypsin inhibitor (BPTI). J. Magn. Reson. 20, 565–569 (1975)Google Scholar
  24. Wagner, G., De Marco, A., Wüthrich, K.: Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies. Biophys. Struct. Mechanism 2, 139–158 (1976)Google Scholar
  25. Wüthrich, K.: Structural studies of hemes and hemoproteins by nuclear magnetic resonance spectroscopy. Structure and Bonding 8, 53–121 (1970)Google Scholar
  26. Wüthrich, K.: NMR in biological research: Peptides and proteins. Amsterdam: North Holland 1976Google Scholar
  27. Wüthrich, K., Wagner, G.: NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett. 50, 265–268 (1975)Google Scholar
  28. Wüthrich, K., Wagner, G., Tschesche, H.: Comparative 1H NMR studies of the solution conformation of the cow colostrum trypsin inhibitor (CTI), the trypsin inhibitor of helix pomatia (HPI) and the basic pancreatic trypsin inhibitor (BPTI). Proc. XXIII Coll.-Protides of the Biological Fluids, pp. 201–204. London: Pergamon Press 1976Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Antonio De Marco
    • 1
  • Harald Tschesche
    • 2
  • Gerhard Wagner
    • 1
  • Kurt Wüthrich
    • 1
  1. 1.Institut für Molekularbiologie und BiophysikEidgenössische Technische HochschuleZürich-HönggerbergSwitzerland
  2. 2.Organisch-chemisches Laboratorium, Lehrstuhl für Organische Chemie und BiochemieTechnische UniversitÄt MünchenMünchenFederal Republic of Germany

Personalised recommendations