Biophysics of structure and mechanism

, Volume 3, Issue 3–4, pp 239–257 | Cite as

Application of radiationless energy transfer for distance measurements across membranes

Transition probabilities for radiationless energy transfer within several assemblies of donors and acceptors at stationary distances
  • L. Kampmann
Article
  • 18 Downloads

Abstract

For several 2- or 3-dimensional configurations of stationary donors and acceptors on or near a spherical membrane shell the transition probabilities for radiationless energy transfer are calculated, using Förster's approximation obtained for Coulombic dipole-dipole interaction of the transition moments. It turns out that the difference in the refractive indices for membrane (lipid) and bulk phase (water) has only a small influence on the transition probabilities. Furthermore, the curvature of biological cell surfaces can be neglected, but affects the energy transfer across small vesicles. The ratio thickness/radius of small vesicles can be determined by measuring fluorescence quenching of excited donors by acceptors on the other side of the membrane.

Key words

Energy transfer Distance Orientation factor Membrane curvature Refractive index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azzi, A.: The application of fluorescent probes in membrane studies. Quart. Rev. Biophys. 8, 237–316 (1975)Google Scholar
  2. Birks, J. B., Dyson, D. J.: The relations between the fluorescence and absorption properties of organic molecules. Proc. Roy. Soc. A 275, 135–148 (1963)Google Scholar
  3. Dale, R. E., Eisinger, J.: Biochemical fluorescence concepts (eds. R. F. Chen, H. Edelhoch), pp. 115–284. New York: Marcel Dekker 1975Google Scholar
  4. Dexter, D. L.: A theory of sensitized luminescence in solids. J. chem. Phys. 21, 836–850 (1953)Google Scholar
  5. Drexhage, K. H., Zwick, M. M., Kuhn, H.: Sensibilisierte Fluoreszenz nach strahlungslosem Energieübergang durch dünne Schichten. Z. Elektrochem. Bunsenges. physik. Chem. 67, 62–67 (1963)Google Scholar
  6. Eisinger, J., Dale, R. E.: Interpretation of intramolecular energy transfer experiments. J. molec. Biol. 84, 643–647 (1974)Google Scholar
  7. Förster, Th.: Energiewanderung und Fluoreszenz. Naturwissenschaften 33, 166–175 (1946)Google Scholar
  8. Förster, Th.: Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2, 55–75 (1948)Google Scholar
  9. Förster, Th.: Experimentelle und theoretische Untersuchung des zwischenmolekularen übergangs von Elektronenanregungsenergie. Z. Naturforsch. 4a, 321–327 (1949)Google Scholar
  10. Förster, Th.: Fluoreszenz organischer Verbindungen, p. 85. Göttingen: Vandenhoeck 1951Google Scholar
  11. Gennis, R. B., Cantor, C. R.: Use of nonspecific dye labeling for singlet energy-transfer measurements in complex systems. A simple model. Biochemistry 11, 2509–2517 (1972)Google Scholar
  12. Kuhn, H., Möbius, D.: Systeme aus monomolekularen Schichten — Zusammenbau und physikalischchemisches Verhalten. Angew. Chem. 17/18, 672–690 (1971)Google Scholar
  13. Seufert, W. D.: Model membranes: Spherical shells bounded by one bimolecular layer of phospholipids. Biophysik 7, 60–73 (1970)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • L. Kampmann
    • 1
  1. 1.Max-Planck-Insitut für BiophysikFrankfurt (Main)Federal Republic of Germany

Personalised recommendations