Probabilistic treatment of the Boltzmann equation of Maxwellian molecules

  • Hiroshi Tanaka
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkeryd, L.: On the Bolztmann equation, Part I: Existence, Part II: The full initial value problem. Arch Rational Mech. Anal. 45, 1–16, 17–34 (1972)Google Scholar
  2. 2.
    Carleman, T.: Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Uppsala 1957.Google Scholar
  3. 3.
    Erdélyi, A. (Editor): Higher Transcendental Functions, Vol. II, New York-Toronto-London: McGraw-Hill 1953Google Scholar
  4. 4.
    Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell's kinetic theory I. J. Rational Mech. Anal. 5, 1–54 (1956)Google Scholar
  5. 5.
    Itô, K.: On stochastic differential eqations. Mem. Amer. Math. Soc. No. 4, 1951.Google Scholar
  6. 6.
    Kac, M.: Probability and Related Topics in the Physical Sciences, New York-London: Interscience 1959.Google Scholar
  7. 7.
    Kolmogorov, A.N.: On Skorohod convergence. Theor. Probability Appl. 1, 215–222 (1956)Google Scholar
  8. 8.
    Kondô, R., Negoro, A.: Certain functional of probability mesures on Hilbert spaces. Hiroshima Math. J. 6, 421–428 (1976)Google Scholar
  9. 9.
    McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. 56, 1907–1911 (1966)Google Scholar
  10. 10.
    McKean, H.P.: An exponential formula for solving Boltzmann's equation for a Maxwellian gas. J. Combinatorial Theory 2, 358–382 (1967)Google Scholar
  11. 11.
    McKean, H.P.: Propagation of chaos for a class of nonlinear parabolic equation. Lecture series in Differential Equtions, session 7: Catholic Univ. 1967Google Scholar
  12. 12.
    Murata, H., Tanaka, H.: An inequality for certain functional of multidimensional probability distributions. Hiroshima Math. J. 4, 75–81 (1974)Google Scholar
  13. 13.
    Murata, H.: Propagation of chaos for Boltzmann-like equation of non-cutoff type in the plane. Hiroshima Math. J. 7, 479–515 (1977)Google Scholar
  14. 14.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces, New York-London: Academic Press 1967Google Scholar
  15. 15.
    Povzner, A.Ya.: The Boltzmann equation the kinetic theory of gases. Mat. Sb. 58, 65–86 (1962). (English Transl.) Amer. Math. Soc. Transl. (2)47, 193–216 (1965)Google Scholar
  16. 16.
    Skorohod, A.V.: Limit theorems for stochastic processes, Theor. Probability Appl. 1, 261–290 (1956)Google Scholar
  17. 17.
    Tanaka, H.: An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheorie verw. Gebiete 27, 47–52 (1973)Google Scholar
  18. 18.
    Tanaka, H.: On Markov process corresponding to Boltzmann's equation of Maxwellian gas. In: Proc. 2nd Japan-USSR Sympos. on Probab. Theory, Lecture Notes in Math., 330, 478–489. Berlin-Heidelberg-New York: Springer-Verlag 1973Google Scholar
  19. 19.
    Tanaka, H.: On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. In: Proc. Intern. Sympos. on Stochastic Differential Equations, Kyoto, 1976Google Scholar
  20. 20.
    Uhlenbeck, G.E., Ford, G.W.: Lectures in Statistical Mechanics. Amer. Math. Soc., Providence, Rhode Island, 1963Google Scholar
  21. 21.
    Wild, E.: On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc. 47, 602–609 (1951)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Hiroshi Tanaka
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceHiroshima UniversityHiroshimaJapan

Personalised recommendations