Biophysics of structure and mechanism

, Volume 9, Issue 4, pp 287–298 | Cite as

Pathways of visual pigment regeneration in fly photoreceptor cells

  • J. Schwemer
Article

Abstract

From three possible pathways of rhodopsin regeneration which were investigated, only one, biosynthesis of rhodopsin, is shown to occur in fly photoreceptors 1–6. The prerequisite of this biosynthesis is the availability of 11-cis retinal which obviously starts opsin synthesis. This pathway seems to be part of a renewal process since metarhodopsin is found to be degraded in fly photoreceptors.

A dark-regeneration of rhodopsin from metarhodopsin as well as a biosynthesis of metarhodopsin and/or rhodopsin from all-trans retinal is not observed. These results indicate that all-trans retinal is not isomerized enzymatically to the 11--cis form, neither when it is bound to opsin (metarhodopsin) nor in its free form.

This leaves two pathways to regenerate rhodopsin in fly photoreceptors, 1) the well-known photoregeneration, and 2) the biosynthesis of rhodopsin.

Key words

Fly photoreceptors Rhodopsin regeneration Biosynthesis of rhodopsin Visual pigment degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann Ch (1972) The regeneration and renewal of visual pigment in vertebrates. In: Dartnall HJA (ed) Photochemistry of vision. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/1, pp 395–416)Google Scholar
  2. Bernard DG (1979) Red-absorbing visual pigment of butterflies. Science 203: 1125–1127Google Scholar
  3. Bernard GD (1983) Bleaching of photoreceptors in eyes of intact butterflies. Science (in press)Google Scholar
  4. Boschek BC, Hamdorf K (1976) Rhodopsin particles in the photoreceptor membrane of an insect. Z Naturforsch 31c: 763Google Scholar
  5. Bridges CDB (1976) Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp Eye Res 22: 435–455Google Scholar
  6. Brown PK, Brown PS (1958) Visual pigments of the octopus and cuttlefish. Nature (London) 182: 1288–1290Google Scholar
  7. Brown PK, White RH (1972) Rhodopsin of the larval mosquito. J Gen Physiol 59: 401–414Google Scholar
  8. Bruno MS, Barnes SN, Goldsmith TH (1977) The visual pigment and visual cycle of the lobster, Homarus. J Comp Physiol 120: 123–142Google Scholar
  9. Ephrussi B, Beadle GW (1936) A technique of transplantation for Drosophila. Am Nat 70: 218–225Google Scholar
  10. Goldman LJ, Barnes SN, Goldsmith TH (1975) Microspectrophotometry of rhodopsin and metarhodopsin in the moth Galleria. J Gen Physiol 66: 383–404Google Scholar
  11. Goldsmith TH, Barker RJ, Cohen CF (1964) Sensitivity of visual receptors of carotenoid-depleted flies: a Vitamin A deficiency in an invertebrate. Science 146: 65–67Google Scholar
  12. Goldsmith TH, Bruno MS (1973) Behavior of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 147–153Google Scholar
  13. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6A, pp 145–224)Google Scholar
  14. Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 155–166Google Scholar
  15. Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 263–289Google Scholar
  16. Harris WA, Ready DF, Lipson ED, Hudspeth AJ, Stark WS (1977) Vitamin A deprivation and Drosophila photopigments. Nature (London) 266: 648–650Google Scholar
  17. Hubbard R, St George RCC (1958) The rhodopsin system of the squid. J Gen Physiol 41: 501–528Google Scholar
  18. Knowles A, Dartnall HJA (1977) The Photobiology of vision. In: Davson H (ed) The eye, vol 2B. Academic Press, New York LondonGoogle Scholar
  19. Langer H (1962) A new eye colour mutation in Calliphora erythrocephala Meig. Nature (London) 194: 111–112Google Scholar
  20. Pak WL, Lidington KJ (1974) Fast electrical potential from a long-lived, long wavelength photoproduct of fly visual pigment. J Gen Physiol 63: 740–756Google Scholar
  21. Razmjoo S, Hamdorf K (1976) Visual sensitivity and the variation of total photopigment content in the blowfly photoreceptor membrane. J Comp Physiol 105: 279–286Google Scholar
  22. Schwemer J (1969) Der Sehfarbstoff von Eledone moschata und seine Umsetzungen in der lebenden Netzhaut. Z Vergl Physiol 62: 121–152Google Scholar
  23. Stavenga DG (1975) Dark regeneration of invertebrate visual pigments. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 290–295Google Scholar
  24. Stavenga DG, Zantema A, Kuiper JW (1973) Rhodopsin processes and the function of the pupil mechaqnism in flies. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 175–180Google Scholar
  25. Whittle A (1976) Reticular spezialisations in photoreceptors: a review. Zool Scr 5: 191–206Google Scholar
  26. Young RW (1975) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15: 700–725Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Schwemer
    • 1
  1. 1.Institut für TierphysiologieRuhr-UniversitÄtBochum 1Germany

Personalised recommendations