Skip to main content
Log in

Progress in phototransduction

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Armon E, Minke B (1983) Light activated electrogenic Na+-Ca2+ exchange in fly photoreceptors: modulation by Na+/K+ pump activity. Biophys Struct Mech 9: 351–359.

    Google Scholar 

  • Autrum H (1981) Light and dark adaptation in invertebrates. In: Autrum H (ed) Invertebrate visual centers and behavior II. Springer, Berlin Heidelberg New York (Handbook of Sensory Physiology, vol VII/6c, pp 1–91)

    Google Scholar 

  • Bennett N (1982 Light-induced interactions between rhodopsin and the GTP-binding protein. Relation with phosphodiesterase activation. Eur J Biochem 123: 133–139

    Google Scholar 

  • Bennett N, Michel-Villaz M, Kühn H (1982) Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Eur J Biochem 127: 97–103

    Google Scholar 

  • Bernard GD (1983) Dark-processes following photoconversion of butterfly rhodopsins. Biophys Struct Mech 9: 279–288

    Google Scholar 

  • Bernard GD (1983) Bleaching of rhabdoms in eyes of intact butterflies. Science (in press)

  • Blest AD (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle. Proc R Soc London (Biol) 200: 463–483

    Google Scholar 

  • Bridges CD (1976) Vitamin A and the role of pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp Eye Res 22: 435–455

    Google Scholar 

  • Calhoon R, Tsuda M, Ebrey T (1980) A light-activated GTPase from octopus photoreceptors. Biochem Biophys Res Commun 94: 1452–1457

    Google Scholar 

  • Chader GJ (1982 Retinoids in ocular tissues: Binding proteins, transport and mechanism of action. In: McDevitt D (ed) Cell biology of the eye. Academic Press, New York, pp 377–433

    Google Scholar 

  • Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disk membrane. TIBS (in press)

  • Ebrey T, Tsuda M, Sassenrath G, West JL, Waddell WH (1980) Light activation of bovine rod phosphodiesterase by non-physiological visual pigments. FEBS Lett 116: 217–219

    Google Scholar 

  • Emeis D, Kühn H, Reichert J, Hofmann KP (1982) Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett 143: 29–34

    Google Scholar 

  • Fain GL, Lisman JE (1981) Membrane conductances of photoreceptors. Prog Biophys Mol Biol 37: 49–89

    Google Scholar 

  • Fein A, Corson DW (1981) Excitation of Limulus photoreceptors by vanadate and by a hydrolysis-resistant analog of guanosine triphosphate. Science 212: 555–557

    Google Scholar 

  • Fein A, Szuts EZ (1982) Photoreceptors: their role in vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York (Handbook of Sensory Physiology, vol VII/6A, pp 145–224)

    Google Scholar 

  • Hara T, Hara R (1982) Cephalopod retinochrome. In: Packer L (ed) Biomembranes. Academic Press, New York (Methods in Enzymology, vol 81, Part H 1, pp 827–834)

    Google Scholar 

  • Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong S-L, Rao JKM, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9: 235–244

    Google Scholar 

  • Hurley JB (1982) Isolation and assay of a phosphodiesterase inhibitor from retinal rod outer segments. In: Packer L (ed) Biomembranes. Academic Press, New York (Methods in Enzymology, vol 81, Part H1, pp 542–547)

    Google Scholar 

  • Kruizinga B, Kamman R, Stavenga DG (1983) Laser induced visual pigment conversions in fly photoreceptors measured in vivo. Biophys Struct Mech 9: 301–309

    Google Scholar 

  • Kühn H (1981) Interactions of rod cell proteins with the disk membrane: Influence of light, ionic strength and nucleotides. In: Miller WH (ed) Molecular mechanisms of photoreceptor transduction. Academic Press, New York, pp 171–201

    Google Scholar 

  • Kühn H, Chabre M (1983) Light-dependent interactions between rhodopsin and photoreceptor enzymes. Biophys Struct Mech 9: 231–234

    Google Scholar 

  • Kühn H, Bennett N, Michel-Villaz M, Chabre M (1981) Interactions between photoexcited rhodopsin and GTP-binding protein: Kinetic and stoichiometric analyses from light-scattering changes. Proc Natl Acad Sci USA 78: 6873–6877

    Google Scholar 

  • Liebman PA, Evanczuk AT (1982) Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes. In: Packer L (ed) Biomembranes. Academic Press, New York (Methods in Enzymology, vol 81, Part H 1, pp 532–542)

    Google Scholar 

  • Liebman PA, Pugh Jr. EN (1981) Control of rod disk membrane phosphodiesterase and a model for visual transduction. In: Miller WH (ed) Molecular mechanisms of photoreceptor transduction. Academic Press, New York, pp 157–170

    Google Scholar 

  • Miller WH (ed) (1981) Molecular mechanisms of photoreceptor transduction. Current topics in membranes and transport, vol 15. Academic Press, New York

    Google Scholar 

  • Miller WH (1982) Physiological evidence that light-mediated decrease in cyclic GMP is an intermediary process in retinal rod transduction. J Gen Physiol 80: 103–123

    Google Scholar 

  • Miller WH, Laughlin SB (1983) Light-mediated cyclic GMP hydrolysis controls important aspects of kinetics of retinal rod voltage response. Biophys Struct Mech 9: 271–278

    Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Feigina MY, Artamov ID, Zolotarev AS, Kostina MB, Bogachuk AS, Miroshnikov AI, Martinov VI, Kudelin AB (1982) The complete amino acid sequence of visual rhodopsin. Bioorg Khim 8: 1011–1014

    Google Scholar 

  • Paulsen R, Zinkler W, Delmelle M (1983) Architecture and dynamics of microvillar photoreceptor membrane of a cephalopod. Exp Eye Res (in press)

  • Pepe IM, Schwemer J, Paulsen R (1982) Characteristics of retinal-binding proteins from the honeybee retina. Vis Res 22: 775–781

    Google Scholar 

  • Rodieck RW (1973) The vertebrate retina. Freeman, San Francisco

    Google Scholar 

  • Schnetkamp PPM (1980) Ion selectivity of the cation transport system of isolated intact cattle rod outer segments. Biochim Biophys Acta 598: 66–90

    Google Scholar 

  • Schwemer J (1969) Der Sehfarbstoff von Eledone moschata und seine Umsetzungen in der lebenden Netzhaut. Z Vergl Physiol 62: 121–152

    Google Scholar 

  • Schwemer J (1979) Molekulare Grundlagen der Photorezeption bei der Schmei\fliege Calliphora erythrocephala Meig. Habilitationsschrift, Bochum

    Google Scholar 

  • Schwemer J (1983) Pathways of visual pigment regeneration in fly photoreceptor cells. Biophys Struct Mech 9: 289–300

    Google Scholar 

  • Stavenga DG, Schwemer J (1983; in press Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York

    Google Scholar 

  • Stieve H (1981) Roles of calcium in visual transduction in invertebrates. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow-London, pp 163–185

    Google Scholar 

  • Stryer L, Hurley JB, Fung BK-K (1981) Transducin: an amplifier protein in vision. TIBS 81: 245–247

    Google Scholar 

  • Uhl R, Abrahamson EW (1981) Dynamic processes in visual transduction. Chem Rev 81: 291–312

    Google Scholar 

  • Vandenberg CA, Montal M (1982) Light regulates GTPase and kinase activities in squid photoreceptors. Biophys J 37: 195a

    Google Scholar 

  • Vogt K, Kirschfeld K (1983) Sensitising pigment in the fly. Biophys Struct Mech 9: 321–330

    Google Scholar 

  • Williams TP (1974) Upper limits to the bleaching of rhodopsin by high intensity flashes. Vis Res 14: 603–607

    Google Scholar 

  • Yamamoto K, Shichi H (1983) Rhodopsin phosphorylation occurs at metarhodopsin II level. Biophys Struct Mech 9: 261–269

    Google Scholar 

  • Yoshizawa T, Fukada Y (1983) Activation of phosphodiesterase by rhodopsin and its analogues. Biophys Struct Mech 9: 245–259

    Google Scholar 

  • Yoshizawa T, Shichida Y (1982) Low temperature spectrophotometry of intermediates of rhodopsin. In: Packer L (ed) Biomembranes. Academic Press, New York (Methods in Enzymology, vol 81, Part H 1, pp 333–353)

    Google Scholar 

  • Young RW (1970) Visual cells. Sci Am 223: 81–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavenga, D.G., de Grip, W.J. Progress in phototransduction. Biophys. Struct. Mechanism 9, 225–230 (1983). https://doi.org/10.1007/BF00535657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00535657

Keywords

Navigation