An “Inner” Variational Principle for Markov Fields on a Graph

  • H. Föllmer
  • J. L. Snell


Stochastic Process Probability Theory Variational Principle Mathematical Biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Föllmer, H.: On entropy and information gain in random fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 26, 207–217 (1973)Google Scholar
  2. 2.
    Lanford III, O.E., and Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. math. Phys. 13, 194–215 (1969)Google Scholar
  3. 3.
    Preston, C.J.: Gibbs states on countable sets. Cambridge Tracts in Mathematics No. 68, London: Cambridge University Press 1974Google Scholar
  4. 4.
    Preston, C.J.: Random fields. Springer Lecture Notes in Mathematics 534. Heidelberg-Berlin-New York: Springer 1976.Google Scholar
  5. 5.
    Spitzer, F.: Markov random fields on an infinite tree. Ann. of Probab. 3, 387–398 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. Föllmer
    • 1
  • J. L. Snell
    • 2
  1. 1.MathematikdepartementETH ZürichZürich
  2. 2.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations