An “Inner” Variational Principle for Markov Fields on a Graph

  • H. Föllmer
  • J. L. Snell


Stochastic Process Probability Theory Variational Principle Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Föllmer, H.: On entropy and information gain in random fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 26, 207–217 (1973)Google Scholar
  2. 2.
    Lanford III, O.E., and Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. math. Phys. 13, 194–215 (1969)Google Scholar
  3. 3.
    Preston, C.J.: Gibbs states on countable sets. Cambridge Tracts in Mathematics No. 68, London: Cambridge University Press 1974Google Scholar
  4. 4.
    Preston, C.J.: Random fields. Springer Lecture Notes in Mathematics 534. Heidelberg-Berlin-New York: Springer 1976.Google Scholar
  5. 5.
    Spitzer, F.: Markov random fields on an infinite tree. Ann. of Probab. 3, 387–398 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. Föllmer
    • 1
  • J. L. Snell
    • 2
  1. 1.MathematikdepartementETH ZürichZürich
  2. 2.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations