Advertisement

Biophysics of structure and mechanism

, Volume 5, Issue 2–3, pp 137–161 | Cite as

Photoconvertible pigment states and excitation in Calliphora; the induction and properties of the prolonged depolarising afterpotential

  • K. Hamdorf
  • S. Razmjoo
Article

Abstract

  1. 1.

    The proposed models of two independent groups, which relate the different states of the visual pigment to the excitation of the membrane in invertebrate photoreceptors (with particular reference to the prolonged depolarising afterpotential, the PDA) are compared and evaluated.

     
  2. 2.

    The validity of the late receptor potential (the “normal” receptor response) as an index of photoreceptor sensitivity, i.e., an index of the number of rhodopsin to metarhodopsin transitions, is verified by concurrent spectrophotometry.

     
  3. 3.

    Electrophysiological observations alone allow the calculation of 1.3×108 photopigment molecules in the rhabdom of an R1–6 photoreceptor of a vitamin A-bred Calliphora.

     
  4. 4.

    The PDA is shown to be quantifiable in terms of the number of rhodopsin to metarhodopsin conversions by the absorption of single light quanta.

     
  5. 5.

    The comparison of discrete membrane fluctuations (quantum bumps) during the PDA and during exposure to sustained light stimuli that mimic the PDA suggest that, the PDA, similar to the late receptor potential, may be due to the summation of quantum bumps.

     

Key words

Prolonged depolarising afterpotential Visual pigments Photoreceptor model Photoreceptor sensitivity Quantum bumps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, A. R.: Spontaneous slow potential fluctuations in the Limulus photoreceptor. J. Gen. Physiol. 48, 297–322 (1964)Google Scholar
  2. Borsellino, A., Fuortes, M. G. F.: Responses to single photons in visual cells of Limulus. J. Physiol. (Lond.) 196, 507 (1968)Google Scholar
  3. Boschek, C. B., Hamdorf, K.: Rhodopsin particles in the photoreceptor membranes of an insect. Z. Naturforsch. 31, 763 (1976)Google Scholar
  4. Brown, P. K., White, R. H.: Rhodopsin of the larval mosquito. J. Gen. Physiol. 59, 401–414 (1972)Google Scholar
  5. Dodge, F. A., Knight, B. W., Toyoda, J.: Voltage noise in Limulus visual cells. Science 160, 88 (1968)Google Scholar
  6. Dörrscheidt-KÄfer, M.: Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge von Calliphora erythrocephala. J. Comp. Physiol. 81, 309–340 (1972)Google Scholar
  7. Farber, D. B., Brown, B. M., Lolley, R. N.: Cyclic GMP: Proposed role in visual cell function. Vision Res. 18, 497–499 (1978)Google Scholar
  8. Fuortes, M. G. F., Yeandle, S.: Probability of occurrence of discrete potential waves in the eye of Limulus. J. Gen. Physiol. 47, 443–463 (1964)Google Scholar
  9. Gogala, M., Hamdorf, K., Schwemer, J.: UV-Sehfarbstoff bei Insekten. Z. vergl. Physiol. 70, 410–413 (1970)Google Scholar
  10. Hamdorf, K.: The physiology of invertebrate visual pigments. In: Handbook of sensory physiology. Autrum, H. (ed.), Vol. VII, 6 A. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  11. Hamdorf, K., Höglund, G., Schlecht, P.: Ion gradient and photoreceptor sensitivity. J. Comp. Physiol. 125, 237–252 (1978)Google Scholar
  12. Hamdorf, K., Paulsen, R., Schwemer, J.: Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochemistry and physiology of visual pigments. Langer, H. (ed.) pp. 155–166. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  13. Hamdorf, K., Razmjoo, S.: The prolonged depolarising afterpotential and its contribution to the understanding of photoreceptor function. Biophys. Struct. Mech. 3, 163–170 (1977)Google Scholar
  14. Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. Comp. Physiol. 86, 281–292 (1973)Google Scholar
  15. Hamdorf, K., Schwemer, J.: Photoregeneration and the adaptation process in insect photoreceptors. In: Photoreceptor Optics. Snyder, A. W., Menzel, R. (eds.), pp. 263–289. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  16. Hamdorf, K., Schwemer, J., Gogala, M.: Insect visual pigment sensitive to ultraviolet light. Nature 231, 458–459 (1971)Google Scholar
  17. Hamdorf, K., Schwemer, J., TÄuber, U.: Der Sehfarbstoff, die Absorption der Rezeptoren und die spektrale Empfindlichkeit der Retina von Eledone moschata. Z. vergl. Physiol. 60, 375–415 (1968)Google Scholar
  18. Hillman, P., Keen, M. E., Winterhager, J.: Discussion of selected topics about the transduction mechanism in photoreceptors. Biophys. Struct. Mech. 3, 183–190 (1977)Google Scholar
  19. Hochstein, S., Minke, B., Hillman, P.: Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J. Gen. Physiol. 62, 105–128 (1973)Google Scholar
  20. Kirschfeld, K., Franceschini, N., Minke, B.: Evidence for a sensitising pigment in fly photoreceptors. Nature 269, 386–390 (1977)Google Scholar
  21. Lisman, J. E., Bering, H.: Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors. J. Gen. Physiol. 70, 621–633 (1977)Google Scholar
  22. Minke, B.: Transduction in photoreceptors with bistable pigments: Intermediate processes. Biophys. Struct. Mech., this volume (1979)Google Scholar
  23. Minke, B., Hochstein, S., Hillman, P.: Antagonistic process as source of visible-light suppression of afterpotential in Limulus UV photoreceptors. J. Gen. Physiol. 62, 787–791 (1973a)Google Scholar
  24. Minke, B., Hochstein, S., Hillman, P.: Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J. Gen. Physiol. 62, 87–104 (1973b)Google Scholar
  25. Minke, B., Wu, C.-F., Pak, W. L.: Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975)Google Scholar
  26. Nolte, J., Brown, J. E.: Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. J. Gen. Physiol. 59, 186–200 (1972)Google Scholar
  27. Ostroy, S. E., Wilson, M., Pak, W. L.: Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem. Biophys. Res. Commun. 59, 960–966 (1974)Google Scholar
  28. Pak, W. L., Lidington, K. J.: Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J. Gen. Physiol. 63, 740–756 (1974)Google Scholar
  29. Razmjoo, S., Hamdorf, K.: Visual sensitivity and the variation of total photopigment content in the blowfly photoreceptor membrane. J. Comp. Physiol. 105, 279–286 (1976)Google Scholar
  30. Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. Comp. Physiol. 102, 269–295 (1975)Google Scholar
  31. Scholes, J. H.: Discontinuity of the excitation process in locust visual cells. Cold Spring Harbor Symp. Quant. Biol. 30, 517–527 (1965)Google Scholar
  32. Stark, W. S., Zitzmann, W. G.: Isolation of adaptation mechanisms of photopigment spectra by vitamin A deprivation in Drosophila. J. Comp. Physiol. 105, 15–27 (1976)Google Scholar
  33. Stavenga, D. G.: Dark regeneration of invertebrate visual pigments. In: Photoreceptor Optics. Snyder, A. W., Menzel, R. (eds.), pp. 290–295. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  34. Stavenga, D. G.: Fly visual pigments. Differences in visual pigments of blowfly and dronefly peripheral retinula cells. J. Comp. Physiol. 111, 137–152 (1976)Google Scholar
  35. Stavenga, D. G., Zantema, A., Kuiper, J. W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and physiology of visual pigments. Langer, H. (ed.), pp. 175–180. Berlin, Heidelberg, New York: Springer 1973.Google Scholar
  36. Tsukahara, Y., Horridge, G. A.: Miniature potentials, light adaptation and afterpotentials in locust retinula cells. J. Exp. Biol. 68, 137–149 (1977)Google Scholar
  37. Tsukahara, Y., Horridge, G. A., Stavenga, D. G.: Afterpotentials in dronefly retinula cells. J. Comp. Physiol. 114, 253–266 (1977)Google Scholar
  38. Wright, R., Cosens, D.: Blue-adaptation and orange-adaptation in white-eyed Drosophila: evidence that the prolonged afterpotential is correlated with the amount of M 580 in R1–6. J. Comp. Physiol. 113, 105–128 (1977)Google Scholar
  39. Wu, C.-F., Pak, W. L.: Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J. Gen. Physiol. 71, 249–268 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. Hamdorf
    • 1
  • S. Razmjoo
    • 1
  1. 1.Lehrstuhl für TierphysiologieRuhr-UniversitÄt BochumBochum 1Federal Republic of Germany

Personalised recommendations