Skip to main content
Log in

Nonlinear flexural vibration of moderately thick orthotropic circular plates

Nichtlineare Schwingungen orthotroper Kreisplatten

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript


In this paper a nonlinear vibration theory which includes the effects of transverse shear deformation and rotatory inertia is formulated for rectilinearly orthotropic circular plates using Berger's method. A solution to the governing equations for rigidly clamped plates is obtained on the basis of a single-mode approach by use of Galerkin's method and numerical Runge-Kutta procedure. A good agreement is found between present results and those obtained by a more accurate theory for nonlinear static and dynamic cases. Numerical results indicate significant influence of these effects on the vibration behaviour of moderately thick plates, especially high-modulus composite plates. These effects, however, are not so significant for the radius-to-thickness ratio greater than 10.


Eine Theorie nichtlinearer Schwingungen orthotroper Kreisplatten wird mit der Methode von Berger formuliert, wobei Schubverformung und Drehträgheit berücksichtigt werden. Für eingespannte Platten wird mit dem Verfahren von Galerkin eine numerische Lösung bestimmt und mit bekannten Lösungen verglichen. Die numerischen Ergebnisse zeigen, daß der Einfluß von Schubverformung und Drehträgheit bei mäßig dicken Platten beträchtlich sein kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Chia, C. Y.: Nonlinear Analysis of Plates. New York: McGraw-Hill 1980

    Google Scholar 

  2. Herrmanu, G.: Influence of Large Amplitudes on Flexural Motions of Elastic Plates. NACA TN-3578, Washington, D.C. 1955

  3. Berger, H. M.: A New Approach to the Analysis of Large Deflections of Plates. ASME J. Appl. Mech. 22 (1955) 465–472

    Google Scholar 

  4. Nash, W. A.; Modeer, J. R.: Certain Approximate Analyses of the Nonlinear Behaviour of Plates and Shells. Proc. I.U.T.A.M. Symposium on the Theory of Thin Elastic Shells. Amsterdam: 331–354 North-Holland Publishing Company 1960

    Google Scholar 

  5. Wall, T.: Large Amplitude Flexural Vibrations of Rectangular Plates. Int. J. Mech. Sci. 5 (1963) 425–438

    Google Scholar 

  6. Wu, C. I.; Vinson, J. R.: On the Nonlinear Oscillations of Plates Composed of Composite Materials. J. Comp. Mater. 3 (1969) 548–561

    Google Scholar 

  7. Sathyamoorthy, M.: Vibration of Plates Considering Shear and Rotatory Inertia. AIAA J. 16 (1978) 285–286

    Google Scholar 

  8. Sathyamoorthy, M.: Shear and Rotatory Inertia Effects on Large Amplitude Vibration of Skew Plates. J. Sound Vib. 52 (1977) 155–163

    Google Scholar 

  9. Nowinsk, J. L.: Nonlinear Vibrations of Elastic Circular Plates Exhibiting Rectilinear Orthotropy. Z. Angew. Math. Phys. 14 (1963) 112–124

    Google Scholar 

  10. Wah, T.: Vibration of Circular Plates at Large Amplitudes. J. Eng. Mech. Div., Proc. ASCE, 89, EM5 (1963) 1–15

    Google Scholar 

  11. Chia, C. Y.; Sathymoorthy, M.: Non-linear Vibration of Circular Plates Including Transverse Shear and Rotatory Inertia. J. Sound. Vib. 78 (1981) 131–137

    Google Scholar 

  12. Kanaka Raju, K.; Venkateswara Rao, G.: Axisymmetric Vibrations of Circular Plates Including the Effects of Geometric Nonlinearity, Shear Deformation and Rotatory Inertia. J. Sound Vib. 47 (1976) 179–184

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathymoorthy, M., Chia, C.Y. Nonlinear flexural vibration of moderately thick orthotropic circular plates. Ing. arch 52, 237–243 (1982).

Download citation

  • Received:

  • Issue Date:

  • DOI: