, Volume 52, Issue 3–4, pp 167–176 | Cite as

Some aspects of Euler-Newton equations of motion

  • H. Hemami


Euler-Newton's equations for a system of connected rigid bodies, written in a special state space form, provide a systematic method of arriving at the differential equations of the system. This method is amenable to programming and symbolic algebraic manipulation. The elimination of some or all forces of constraint is by projection, implementing the principle of virtual work, and is done by inner products. The computation of these forces requires symbolic inversion of a matrix for which an iterative scheme is proposed here. A method for construction of Lyapunov functions for stability of such systems in the vicinity of an arbitrary operating point is proposed. This construction may be achieved by symbolic manipulations and supplements applications of the Euler-Newton method.


Lyapunov Function Operating Point Space Form Iterative Scheme Virtual Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Einige Aspekte der Euler-Newtonschen Bewegungsgleichungen


Euler-Newtonsche Gleichungen, dargestellt in einem besonderen Zustandsraum, liefern eine systematische Methode zur Herleitung der Differentialgleichungen eines Systems starr verbundener Körper. Diese Methode eignet sich für symbolisch algebraische Verfahren und zur Programmierung. Durch Projektion, unter Anwendung des Prinzips der virtuellen Arbeit und Berechnung der inneren Produkte, können einige oder alle Zwangskräfte eliminiert werden. Die Berechnung dieser Kräfte erfordert symbolische Matrixinversion, für die hier ein iteratives Verfahren vorgeschlagen wird. Ferner wird eine Methode vorgestellt, die zur Herleitung der Lyapunovschen Stabilitätsfunktion in der Umgebung eines beliebigen Arbeitspunktes dient. Die Lyapunovfunktion kann durch symbolische Verfahren und durch ergänzende Anwendungen der Euler-Newton Methode ermittelt werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wittenburg, J.: Dynamics of systems of rigid bodies. Stuttgart: B. G. Teubner 1977Google Scholar
  2. 2.
    Wittenburg, J.: Dynamics of multibody systems. Proc. 1980, IUTAM, Toronto, CanadaGoogle Scholar
  3. 3.
    Hatze, H.: Neuromusculoskeletal control systems modelling. Acritical survey of recent developments. IEEE Trans. AC 25 (1980) 375–385Google Scholar
  4. 4.
    Baumgarte, J.: Stabilization of constraints and integrals of motion. Comp. Methods in Appl. Mech. Eng. 1 (1972) 1–16Google Scholar
  5. 5.
    Hemami, H.; Wyman, B. F.: Modelling and control of constrained dynamic systems with application to biped locomotion in the frontal plane. IEEE Trans. AC 24 (1979) 526–535Google Scholar
  6. 6.
    Rubin, H.; Ungar, P.: Motion under a strong constraining force. Commun. Pure Appl. Math X (1957) 65–87Google Scholar
  7. 7.
    Wittenburg, J.; Lilov, L.: Relative equilibrium positions and their stability for a multi-body satellite in a circular orbit. Ing. Arch. 44 (1975) 269–279Google Scholar
  8. 8.
    Hemami, H.; Wyman, B. F.: Indirect control of the forces of constraint in dynamic systems. J. Dyn. Syst., Meas., Control 101 (1979) 355–360Google Scholar
  9. 9.
    Ceranowicz, A. Z.; Wyman, B. F.; Hemami, H.: Control of constrained systems of uniform controllability index two. IEEE Trans. AC 25 (1980) 1102–1111Google Scholar
  10. 10.
    Bourne, S. R.; Horton, J. R.: The design of the cambridge algebra system. Proc. of the second symposium on symbolic and algebraic manipulation, New York: Association for Computing Machinery 1971, pp. 134–143Google Scholar
  11. 11.
    Hearn, A. C.: REDUCE 2: A system for algebraic manipulation. Proc. of the second symposium on symbolic and algebraic manipulation. New York: Association for Computing Machinery 1971, pp. 128–133Google Scholar
  12. 12.
    Martin, W. A.; Fateman, R. J.: The MACSYMA System. Proc. of the second symposium on symbolic and algebraic manipulation. New York: Association for Computing Machinery 1971, pp. 59–75Google Scholar
  13. 13.
    Jeffreys, W. H.: Automated algebraic manipulation in celestial mechanics. Proc. of the second symposium on symbolic and algebraic manipulation. New York: Association for Computing Machinery 1971, pp. 328–331Google Scholar
  14. 14.
    Sturges, R.: Teleoperator arm design program (TOAD). Cambridge, Mass.: M.I.T. Draper Laboratory Report No. 3-2746, 1973Google Scholar
  15. 15.
    Engleman, C.: The legacy of MATHLAB 68. Proc. of the second symposium on symbolic and algebraic manipulation. New York: Association for Computing Machinery 1971, pp. 29–41Google Scholar
  16. 16.
    Dillon, S. R.: Computer assisted equation generation in linkage dynamics. Ph. D. Diss., The Ohio State Univ. 1973Google Scholar
  17. 17.
    Dillon, S. R.; Hemami, H.: Automated equation generation and its application to problems in control. Proc. of fifteenth joint automatic control conference, Austin, TX, 1974Google Scholar
  18. 18.
    Millen, J. K.: CHARYBDIS: A LISP program to display mathematical expressions on typewriter like devices. Interactive systems for experimental applied mathematics. New York: Academic Press 1968, pp. 155–166Google Scholar
  19. 19.
    Moses, J.: Symbolic integration, the stormy decade. Proc. of the second symposium on symbolic and algebraic manipulation. New York: Association for Computing Machinery 1971, pp. 427–440Google Scholar
  20. 20.
    Schiehlen, W.; Kreuzer, E.: Rechnergestütztes Aufstellen der Bewegungsgleichungen gewöhnlicher Mehrkörpersysteme. Ing. Arch. 46 (1977) 185–194Google Scholar
  21. 21.
    Schiehlen, W. O.; Kreuzer, E. J.: Symbolic computerized derivation of equations of motion. In: K. Magnus (ed.): Dynamics of multibody systems. Berlin, Heidelberg, New York: Springer 1978, S. 290 to 305Google Scholar
  22. 22.
    Schiehlen, W. O.: Generalized constraint forces in ordinary multibody systems. Proc. of the 14. Jugoslav. Kong. racion. I primen. Mehanike, Portoroz C3–16 (1978) 301–308Google Scholar
  23. 23.
    Kreuzer, E.: Symbolische Berechnung der Bewegungsgleichungen von Mehrkörpersystemen. Fortschr. Ber. VDI Z., R. 11, 32 (1979)Google Scholar
  24. 24.
    Kreuzer, E.: Dynamical analysis of mechanisms using symbolical equation manipulation. IFTOM V ASME G 00/48 (1979) 599–602Google Scholar
  25. 25.
    Hemami, H.: A. state space model for interconnected rigid bodies. To appear in IEEE Trans. A.C 27 (1982) 376–382Google Scholar
  26. 26.
    Hemami, H.; Wyman, B. F.; Bavarian, B.: Lyapunov stability of imbedded dynamic systems. Ligaments and antigravity muscles. Subm. IEEE Trans. AC, 1981Google Scholar
  27. 27.
    Kane, T. R.: Dynamics of nonholonomic systems. Trans. ASME, J. Appl. Mech. 28 (1961) 574–578Google Scholar
  28. 28.
    Pars, L. A.: A treatise on analytical dynamics. New York: John Wiley and Sons, Inc. 1968Google Scholar
  29. 29.
    Vukobratovic, M.: Legged locomotion robots and anthropomorphic mechanisms. Research Monograph, Mihailo Pupin Institute, Belgrade, Yugoslavia, 1975Google Scholar
  30. 30.
    Hemami, H.: Derivation of a matrix identity. IEEE Trans. AC 14 (1969) 304–305Google Scholar
  31. 31.
    Sain, M.: Matrix identities. IEEE Trans. AC 15 (1969) 282Google Scholar
  32. 32.
    Gubina, F.; Hemami, H.; McGhee, R. B.: On the dynamic stability of biped locomotion. IEEE Trans. Biomed. Eng. 21 (1974) 102–108Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • H. Hemami
    • 1
  1. 1.Department of Electrical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations