Advertisement

Une classe de systèmes de particules stable par association

  • Françoise Bertein
  • Antonio Galves
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Harris, T.E.: Contact interactions on a lattice. Ann. Probability 2, 969–988 (1974)Google Scholar
  2. 2.
    Harris, T.E.: Graphical representations of associate processes, Séminaire sur les systèmes à une infinité de particules. Ecole Polytechnique, Paris (1975)Google Scholar
  3. 3.
    Harris, T.E.: On a class of set-valued Markov processes. Ann. Probability 4, 175–194 (1976)Google Scholar
  4. 4.
    Holley, R., Liggett, T.: Ergodic theorems for weakly interacting systems and the voter model. Ann. Probability 3, 43–663 (1975)Google Scholar
  5. 5.
    Ito, K.: Poisson point processes attached to Markov processes. Proc. 6th Berkeley Sympos. Math. Statist. Probab., vol. 3, 225–241 (1972), University of California Press (Berkeley)Google Scholar
  6. 6.
    Neveu, J.: Processus ponctuels, Ecole d'Eté de Probabilités de St Flour 1976. Lect. Notes in Math. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  7. 7.
    Gray, L., Griffeath, D.: On the uniqueness and nonuniqueness of proximity processes. Preprint 1976Google Scholar
  8. 8.
    Holley, R., Strook, D.: Dual processes and their application to infinite interacting systems. Advances in Math. [A paraÎtre]Google Scholar
  9. 9.
    Schwartz, D.: Application of duality to a class of Markov processes. Ann. Probability [A paraÎtre]Google Scholar
  10. 10.
    Spitzer, F.: Recurrent random walk of an infinite particle system. Trans. Amer. Math. Soc. 198, 191–199 (1974)Google Scholar
  11. 11.
    Sullivan, W.G.: Markov processes for random fields. Comm. Dublin Inst. Adv. Studies Ser. A, No23, 1–75 (1975)Google Scholar
  12. 12.
    Harris, T.E.: Additive set-valued Markov processes and percolation methods. Preprint 1976Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Françoise Bertein
    • 1
  • Antonio Galves
    • 2
  1. 1.Laboratoire de ProbabilitésUniversité Pierre et Marie Curie, Paris VIParis Cedex 05France
  2. 2.Instituto de Matemática e EstatísticaUniversidade de São PauloS. Paulo, S.P.Brésil

Personalised recommendations