An elementary proof of the Gaussian dichotomy theorem

  • E. J. Brody


Stochastic Process Probability Theory Mathematical Biology Dichotomy Theorem Elementary Proof 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kakutani, S.: On equivalence of infinite product measures. Ann. of Math. II. Ser. 49, 214–224 (1948).Google Scholar
  2. 2.
    Kraft, C.: Some conditions for consistency and uniform consistency of statistical procedures. Univ. California Publ. Statist. 2, 125–142 (1955).Google Scholar
  3. 3.
    Shepp, L.A.: The singularity of Gaussian measures in function space. Proc. nat. Acad. Sci. USA 52, 430–433 (1964).Google Scholar
  4. 4.
    Hájek, J.: On a property of normal distributions of an arbitrary stochastic process (in Russian). Czechosl. math. J. 8, 610–618 (1958). (Also Select Transl. math. Statist. Probab. 1, 245–253).Google Scholar
  5. 5.
    Feldman, J.: Equivalence and perpendicularity of Gaussian processes. Pacific J. Math. 8, 699–708 (1958).Google Scholar
  6. 6.
    —: Correction to equivalence and perpendicularity of Gaussian processes. ibid. 9, 1295–1296 (1959).Google Scholar
  7. 7.
    Xia, D.X.: Measure and Integration Theory on Infinite-dimensional Spaces (in Chinese, Shanghai 1965; English translation. New York: Academic Press 1971).Google Scholar
  8. 8.
    Halmos, P.: Measure Theory. New York: Van Nostrand 1950.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • E. J. Brody
    • 1
  1. 1.Department of Mathematics Chung Chi CollegeThe Chinese University of Hong Kong ShatinNew TerritoriesHong Kong

Personalised recommendations