Advertisement

Maxima of sums of random variables and suprema of stable processes

  • N. H. Bingham
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Stable Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter, G., Donsker, M.D.: On the distribution of the supremum functional for processes with stationary independent increments. Trans. Amer. Math. Soc. 85, 73–87 (1957).Google Scholar
  2. 2.
    Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968.Google Scholar
  3. 3.
    Bingham, N.H.: Limit theorems for occupation times of Markov processes. Z. Wahrscheinlich keitstheorie verw. Geb. 17, 1–22 (1971).Google Scholar
  4. 4.
    Bingham, N.H.: Limit theorems for regenerative phenomena, recurrent events and renewal theory. Z. Wahrscheinlichkeitstheorie verw. Geb. 21, 20–44 (1972).Google Scholar
  5. 5.
    Bingham, N.H.: A class of limit theorems for Markov processes. Stochastic Geometry and Stochastic Analysis. (To appear.)Google Scholar
  6. 6.
    Bingham, N.H.: Limit theorems in fluctuation theory. (To appear in “Advances in Appl. Probability”.)Google Scholar
  7. 7.
    Borovkov, A.A.: On the first-passage time for one class of processes with independent increments. Theor. Probab. Appl. 10, 331–334 (1965).Google Scholar
  8. 8.
    Borovkov, A.A.: Factorisation identities and properties of the distribution of the supremum of sequential sums. Theor. Probab. Appl. 15, 359–403 (1965).Google Scholar
  9. 9.
    de Bruijn, N. G.: Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform. Nieuw Arch. Wiskunde III, Ser. 7, 20–26 (1959).Google Scholar
  10. 10.
    Darling, D.A.: The maximum of sums of stable random variables. Trans. Amer. Math. Soc. 83, 164–169 (1956).Google Scholar
  11. 11.
    Doetsch, G.: Theorie und Anwendung der Laplace-Transformation. Berlin: Springer 1937.Google Scholar
  12. 12.
    Dynkin, E.B.: Limit theorems for sums of independent random variables with infinite expectations. Selected Translations (I.M.S.-A.M.S.) 1, 171–189 (1961).Google Scholar
  13. 13.
    Feller, W.: An Introduction to Probability Theory and its Applications. Volume II. New York: Wiley 1966.Google Scholar
  14. 14.
    Fristedt, B.: Sample functions of stochastic processes with stationary independent increments. Mathematics Research Center, University of Wisconsin, Technical Summary Report No. 1166 (1971).Google Scholar
  15. 15.
    Gnedenko, B.V., Kolmogorov, A.N.: Limit theorems for sums of independent random variables. London: Addison-Wesley 1954.Google Scholar
  16. 16.
    Gusak, D.V.: On the joint distribution of the first exit-time and exit value for homogeneous additive processes with independent increments. Theor. Probab. and Appl. 14, 14–23 (1969).Google Scholar
  17. 17.
    Gusak, D.V., Korolyuk, V.S.: On the first-passage time across a given level for processes with independent increments. Theor. Probab. Appl. 13, 448–456 (1968).Google Scholar
  18. 18.
    Gusak, D.V., Korolyuk, V.S.: On the joint distribution of a process with stationary independent increments and its maximum. Theor. Probab. Appl. 14, 400–409 (1968).Google Scholar
  19. 19.
    Hawkes, J.: A lower Lipschitz condition for the stable subordinator. Z. Wahrscheinlichkeits theorie verw. Geb. 17, 23–32 (1971).Google Scholar
  20. 20.
    Heyde, C.C.: Some renewal theorems with applications to a first-passage problem. Ann. Math. Statistics 37, 699–710 (1966).Google Scholar
  21. 21.
    Heyde, C.C.: Asymptotic renewal results for a natural generalisation of classical renewal theory. J. Roy. Statist. Soc. Series B 29, 141–150 (1967).Google Scholar
  22. 22.
    Heyde, C.C.: A limit theorem for random walk with drift. J. Appl. Probab. 4, 144–150 (1967).Google Scholar
  23. 23.
    Heyde, C.C.: On the maximum of sums of random variables and the supremum functional for stable processes. J. Appl. Probab. 6, 419–429 (1969).Google Scholar
  24. 24.
    Hoffman-JØrgensen, J.: Markov random sets. Math. Scandinav. 24, 145–166 (1969).Google Scholar
  25. 25.
    Horowitz, J.: A note on the arc-sine law and Markov random sets. Ann. Math. Statistics 42, 1068–1074 (1971).Google Scholar
  26. 26.
    Horowitz, J.: Semilinear Markov processes, subordinators and renewal theory. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 167–193 (1972).Google Scholar
  27. 27.
    Iglehart, D.L., Whitt, W.: The equivalence of functional central limit theorems for counting processes and associated partial sums. Ann. Math. Statistics 42, 1372–1378 (1971).Google Scholar
  28. 28.
    Ito, K., McKean, P.: Diffusion Processes and their Sample Paths. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  29. 29.
    Krylov, N. V., Jushkevitch, A. A.: Markov random sets. Trans. Moskow Math. Soc. 13, 114–135 (1965).Google Scholar
  30. 30.
    Lamperti, J.: An occupation-time theorem for stochastic processes. Trans. Amer. Math. Soc. 88, 380–387 (1958).Google Scholar
  31. 31.
    Lamperti, J.: An invariance principle in renewal theory. Ann. Math. Statistics 33, 685–696 (1962).Google Scholar
  32. 32.
    Lamperti, J.: Semi-stable sochastic processes. Trans. Amer. Math. Soc. 104, 62–78 (1962).Google Scholar
  33. 33.
    Meyer, P.-A.: Ensembles régéneratifs, d'apres Hoffman-JØrgensen. Lecture Notes in Mathematics 124. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  34. 34.
    Nagaev, S. V.: An estimate for the rate of convergence of the distribution of the maximum sum of independent random variables. Siber. Math. J. 10, 443–458 (1969).Google Scholar
  35. 35.
    Nagaev, S. V.: On the speed of convergence of the distribution of the maximum sum of independent random variables. Theory of Probability and Applications 15, 309–315 (1970).Google Scholar
  36. 36.
    Nagaev, S. V.: Asymptotic expansions for the maximum of sums of independent random variables. Theor. Probab. Appl. 15, 514–515 (1970).Google Scholar
  37. 37.
    Nevzorov, V.B., Petrov, V. V.: On the distribution of the maximum cumulative sum of independent random variables. Theor. Probab. and Appl. 14, 682–687 (1969).Google Scholar
  38. 38.
    Prabhu, N. U.: Wiener-Hopf factorisation for convolution semigroups. Z. Wahrscheinlichkeitstheorie verw. Geb. 23, 103–113 (1972).Google Scholar
  39. 39.
    Pollard, H.: The completely monotonic character of the Mittag-Leffler function. Bull. Amer. Math. Soc. 54, 1115–1116 (1948).Google Scholar
  40. 40.
    Ray, D.: Stable processes with an absorbing barrier. Trans. Amer. Math. Soc. 89, 16–24 (1958).Google Scholar
  41. 41.
    Rogozin, B.A.: On the distribution of the first jump. Theor. Probab. Appl. 9, 450–465 (1964).Google Scholar
  42. 42.
    Rogozin, B.A.: On some classes of processes with independent increments. Theor. Probab. Appl. 10, 479–483 (1965).Google Scholar
  43. 43.
    Rogozin, B.A.: The speed of convergence of the distribution of the maximum of sums of independent random variables to a limit distribution. Theor. Probab. Appl. 11, 438–441 (1966).Google Scholar
  44. 44.
    Rogozin, B.A.: On the distribution of functionals related to boundary problems for processes with independent increments. Theor. Probab. Appl. 11, 580–591 (1966).Google Scholar
  45. 45.
    Rogozin, B.A.: A remark on a theorem due to Feller. Theor. Probab. Appl. 14, 529 (1969).Google Scholar
  46. 46.
    Rogozin, B. A.: On the distribution of the maximum of a process with independent increments. Siber. Math. J. 10, 989–1010 (1969).Google Scholar
  47. 46a.
    Rogozin, B.A.: The distribution of the first ladder moment and height and fluctuation of a random walk. Theor. Probab. Appl. 16, 575–595 (1971).Google Scholar
  48. 46b.
    Rogozin, B.A.: The behaviour of a jump for a process. Theor. Probab. Appl. 17, 146–149 (1972).Google Scholar
  49. 46c.
    Rogozin, B.A.: The distribution of the first hit for stable and asymptotically stable walks in an interval. Theor. Probab. Appl. 17, 332–338 (1972).Google Scholar
  50. 47.
    Rubinovitch, M.: Ladder phenomena in stochastic processes with stationary independent increments. Z. Wahrscheinlichkeitstheorie verw. Geb. 20, 58–74 (1971).Google Scholar
  51. 48.
    Shtatland, E.S.: On the distribution of the maximum of a process with independent increments. Theor. Probab. Appl. 10, 483–487 (1965).Google Scholar
  52. 49.
    Shtatland, E.S.: The distribution of the time the maximum is achieved for processes with independent increments. Theor. Probab. Appl. 11, 637–642 (1966).Google Scholar
  53. 50.
    Sinai, Ya. G.: On the distribution of the first positive sum for a sequence of independent random variables. Theor. Probab. Appl. 2, 122–129 (1957).Google Scholar
  54. 51.
    Skorohod, A. V.: Limit theorems for stochastic processes. Theor. Probab. Appl. 1, 261–290 (1956).Google Scholar
  55. 52.
    Skorohod, A. V.: Limit theorems for stochastic processes with independent increments. Theor. Probab. Appl. 2, 138–171 (1957).Google Scholar
  56. 53.
    Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans Amer. Math. Soc. 82, 323–339 (1956).Google Scholar
  57. 54.
    Spitzer, F.: A Tauberian theorem and its probability interpretation. Trans. Amer. Math. Soc. 94, 150–169 (1960).Google Scholar
  58. 55.
    Stone, C.: Weak convergence of stochastic processes defined on semi-infinite time-intervals. Proc. Amer. Math. Soc. 14, 694–700 (1963).Google Scholar
  59. 56.
    Teugels, J.L.: Regular variation of Markov renewal functions. J. London Math. Soc., II Ser. 2, 179–190 (1970).Google Scholar
  60. 57.
    Teugels, J.L.: Abelian and Tauberian theorems for integral transforms. (To appear.)Google Scholar
  61. 58.
    Vervaat, W.: Functional central limit theorems for processes with positive drift and their inverses. Z. Wahrscheinlichkeitstheorie verw. Geb. 23, 245–253 (1972).Google Scholar
  62. 59.
    Whitt, W.: Weak convergence of first-passage processes. J. Appl. Probab. 8, 417–422 (1971).Google Scholar
  63. 60.
    Whitt, W.: Continuity of several functions on the function-space D. (To appear in “Annals of Probability”.)Google Scholar
  64. 61.
    Zolotarev, V. M.: Mellin-Stieltjes transform in probability theory. Theor. Probab. Appl. 2, 433–460 (1957).Google Scholar
  65. 62.
    Zolotarev, V.M.: The first-passage time of a level and the behaviour at infinity for a class of processes with independent increments. Theor. Probab. Appl. 9, 653–664 (1964).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • N. H. Bingham
    • 1
  1. 1.Department of Mathematics Westfield CollegeUniversity of LondonLondonEngland

Personalised recommendations